Skip to main content
Log in

A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2 evolution

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A novel pure cubic-phase pyrochlore structure tin(II) antimonate nanophotocatalyst, stoichiometric Sn2Sb2O7, has been prepared by a modified ion-exchange process using an antimonic acid precursor, and employed in visible-light-driven photocatalytic H2 evolution for the first time. The physicochemical properties (crystal phase, chemical composition and state, textural properties, and optical properties) of the material were investigated by different instrumental techniques. Compared with the antimonic acid precursor, the as-prepared Sn2Sb2O7 had a narrower bandgap, smaller crystal size, and larger BET surface area. The as-prepared Sn2Sb2O7 was validated as a promising candidate for visible-light-driven photocatalytic H2 evolution with a constant rate of 40.10 μmol·h−1·gcat −1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pagliaro, M.; Konstandopoulos, A. G.; Ciriminna, R.; Palmisano, G. Solar hydrogen: Fuel of the near future. Energy Environ. Sci. 2010, 3, 279–287.

    Article  CAS  Google Scholar 

  2. Osterloh, F. E. Inorganic materials as catalysts for photochemical splitting of water. Chem. Mater. 2008, 20, 35–54.

    Article  CAS  Google Scholar 

  3. Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.

    Article  CAS  Google Scholar 

  4. Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

    Article  CAS  Google Scholar 

  5. Abe, R. Recent progress on photocatalytic and photo-electrochemical water splitting under visible light irradiation. J. Photochem. Photobio. C 2010, 11, 179–209.

    Article  Google Scholar 

  6. Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

    Article  CAS  Google Scholar 

  7. Kitano, M.; Hara, M. Heterogeneous photocatalytic cleavage of water. J. Mater. Chem. 2010, 20, 627–641.

    Article  CAS  Google Scholar 

  8. Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

    Article  CAS  Google Scholar 

  9. Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

    Article  CAS  Google Scholar 

  10. Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.

    Article  CAS  Google Scholar 

  11. Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

    Article  CAS  Google Scholar 

  12. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

    Article  CAS  Google Scholar 

  13. Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

    Article  CAS  Google Scholar 

  14. Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem. Mater. 2008, 20, 1299–1307.

    Article  CAS  Google Scholar 

  15. Cho, I. S.; Kwak, C. H.; Kim, D. W.; Lee, S.; Hong, K. S. Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 2009, 113, 10647–10653.

    Article  CAS  Google Scholar 

  16. Uma, S.; Singh, J.; Thakral, V. Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochloretype oxides and their photocatalytic activities. Inorg. Chem. 2009, 48, 11624–11630.

    Article  CAS  Google Scholar 

  17. Boppana, V. B. R.; Lobo, R. F. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(II)-doped titania. J. Catal. 2011, 281, 156–168.

    Article  CAS  Google Scholar 

  18. Li, Q. Y.; Kako, T.; Ye, J. H. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. Int. J. Hydrogen Energy 2011, 36, 4716–4723.

    Article  CAS  Google Scholar 

  19. Shi, J. W.; Ye, J. H.; Zhou, Z. H.; Li, M. T.; Guo, L. J. Hydrothermal synthesis of Na0.5La0.5TiO3-LaCrO3 solidsolution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution. Chem. Eur. J. 2011, 17, 7858–7867.

    Article  CAS  Google Scholar 

  20. Zhang, Z. Y.; Lin, Q. P.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chem. Commun. 2011, 47, 3918–3920.

    Article  CAS  Google Scholar 

  21. Shi, J. W.; Ye, J. H.; Li, Q. Y.; Zhou, Z. H.; Tong, H.; Xi, G. C.; Guo, L. J. Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: Topotactic synthesis and enhanced photocatalytic activity. Chem. Eur. J. 2012, 18, 3157–3162.

    Article  CAS  Google Scholar 

  22. Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

    Article  CAS  Google Scholar 

  23. Khan, S. U.; Al-Shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

    Article  CAS  Google Scholar 

  24. Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water—enhancing catalytic performance holds promise for hydrogen production by water splitting in sunlight. Nature 2006, 440, 295–295.

    Article  CAS  Google Scholar 

  25. Sun, J. W.; Liu, C.; Yang, P. D. Surfactant-free, large-scale, solution-liquid-solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 2011, 133, 19306–19309.

    Article  CAS  Google Scholar 

  26. Tang, M. L.; Grauer, D. C.; Lassalle-Kaiser, B.; Yachandra, V. K.; Amirav, L.; Long, J. R.; Yano, J.; Alivisatos, A. P. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photo-sensitizer. Angew. Chem. Int. Ed. 2011, 50, 10203–10207.

    Article  CAS  Google Scholar 

  27. Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

    Article  CAS  Google Scholar 

  28. Ozawa, Y.; Miura, N.; Yamazoe, N.; Seiyama, T. Proton conduction in thermally treated antimonic acid samples. Chem. Lett. 1982, 11, 1741–1742.

    Article  Google Scholar 

  29. Liu, Q. Z.; Dai, J. M.; Liu, Z. L.; Zhang, X. B.; Zhu, G. P.; Ding, G. H. Electrical and optical properties of Sb-doped BaSnO3 epitaxial films grown by pulsed laser deposition. J. Phys. D. 2010, 43, 455401.

    Article  Google Scholar 

  30. Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem. Eur. J. 2012, 18, 7543–7551.

    CAS  Google Scholar 

  31. Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

    Article  CAS  Google Scholar 

  32. Shi, J. W.; Shen S. H.; Chen Y. B.; Guo L. J.; Mao S. S. Visible light-driven photocatalysis of doped SrTiO3 tubular structure. Opt. Express 2012, 20, A351–A359.

    Article  CAS  Google Scholar 

  33. Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.

    Article  CAS  Google Scholar 

  34. Hwang, S.; Lee, M. C.; Choi, W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: Kinetics and mechanism. Appl. Catal. B 2003, 46, 49–63.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liejin Guo.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Ma, L., Wu, P. et al. A novel Sn2Sb2O7 nanophotocatalyst for visible-light-driven H2 evolution. Nano Res. 5, 576–583 (2012). https://doi.org/10.1007/s12274-012-0243-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-012-0243-0

Keywords

Navigation