Skip to main content
Log in

Preparation of highly crystalline graphitic nanocarbon for the electro-oxidation of methanol

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Highly crystalline graphitic nanocarbons (GNC) have been prepared by the wet-air treatment of hydrothermallyderived graphitic porous carbon. The materials were characterized by scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and electrochemical methods. The experimental results revealed that the treatment temperature has a significant effect on the morphology and degree of graphitic crystallinity. When GNC was treated at 450 °C under a wet-air atmosphere, the product (GNC-450) consisted of aggregates of silkworm-shaped carbon nanoparticles with enhanced graphitic characteristics. GNC-450 was evaluated as a catalyst support in the electro-oxidation of methanol. The Pt/GNC-450 catalyst contained smaller Pt particles and had a higher electrochemically active surface area than a commercial carbon black-supported Pt catalyst. In the electro-oxidation of methanol, the Pt/GNC-450 catalyst showed the highest performance among the Pt catalysts examined in this study. The superior catalytic performance appears to be closely related to the enhanced graphitic characteristics with highly dispersed Pt nanoparticles on the graphitic layers, which have a positive effect on the electrochemical performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Toda, T.; Igarashi, H.; Uchida, H.; Watanabe, M. Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J. Electrochem. Soc. 1999, 146, 3750–3756.

    Article  CAS  Google Scholar 

  2. Cleghorn, S. J. C.; Ren, X.; Springer, T. E.; Wilson, M. S.; Zawodzinski, C.; Zawodzinski, T. A.; Gottesfeld, S. PEM fuel cells for transportation and stationary power generation applications. Int. J. Hydrogen Energ. 1997, 22, 1137–1144.

    Article  CAS  Google Scholar 

  3. Service, R. F. Fuel cells: Shrinking fuel cells promise power in your pocket. Science 2002, 296, 1222–1224.

    Article  CAS  Google Scholar 

  4. Tian, J. H.; Wang, F. B.; Shan, Z. Q.; Wang, R. J.; Zhang, J. Y. Effect of preparation conditions of Pt/C catalysts on oxygen electrode performance in proton exchange membrane fuel cells. J. Appl. Electrochem. 2004, 34, 461–467.

    Article  CAS  Google Scholar 

  5. Zhou, Z. H.; Wang, S. L.; Zhou, W. J.; Jiang, L. H.; Wang, G. X.; Sun, G. Q.; Zhou, B.; Xin, Q. Preparation of highly active Pt/C cathode electrocatalysts for DMFC by an improved aqueous impregnation method. Phys. Chem. Chem. Phys. 2003, 5, 5485–5488.

    Article  CAS  Google Scholar 

  6. Li, W. Z.; Liang, C. H.; Zhou, W. J.; Qiu, J. S.; Zhou, Z. H.; Sun, G. Q.; Xin, Q. Preparation and characterization of multiwalled carbon nanotube-supported platinum for cathode catalysts of direct methanol fuel cells. J. Phys. Chem. B 2003, 107, 6292–6299.

    Article  CAS  Google Scholar 

  7. Chen, W. X.; Lee, J. Y.; Liu, Z. L. Microwave-assisted synthesis of carbon supported Pt nanoparticles for fuel cell applications. Chem. Commun. 2002, 2588–2589.

  8. Zhang, X.; Chan, K. Y. Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chem. Mater. 2003, 15, 451–459.

    Article  CAS  Google Scholar 

  9. Liu, Z. L.; Hong, L.; Tham, M. P.; Lim, T. H.; Jiang, H. X. Nanostructured Pt/C and Pd/C catalysts for direct formic acid fuel cells. J. Power Sources 2006, 161, 831–835.

    Article  CAS  Google Scholar 

  10. Zhou, Z. H.; Zhou, W. J.; Wang, S. L.; Wang, G. X.; Jiang, L. H.; Li, H. Q.; Sun, G. Q.; Xin, Q. Preparation of highly active 40 wt% Pt/C cathode electrocatalysts for DMFC via different routes. Catal. Today 2004, 93–95, 523–528.

    Article  Google Scholar 

  11. Andreas, H. A.; Birss, V. I. Synthesis and characterization of alkoxide-derived Pt nanoparticles. J. Phys. Chem. B 2005, 109, 3743–3750.

    Article  CAS  Google Scholar 

  12. Fang, B.; Kim, M.; Yu, J. S. Hollow core/mesoporous shell carbon as a highly efficient catalyst support in direct formic acid fuel cell. Appl. Catal. B-Environ. 2008, 84, 100–105.

    Article  CAS  Google Scholar 

  13. Chan, K. Y.; Ding, J.; Ren, J. W.; Cheng, S. A.; Tsang, K. Y. Supported mixed metal nanoparticles as electrocatalysts in low temperature fuel cells. J. Mater. Chem. 2004, 14, 505–516.

    Article  CAS  Google Scholar 

  14. Rodriguez-Reinoso, F. The role of carbon materials in heterogeneous catalysis. Carbon 1998, 36, 159–175.

    Article  CAS  Google Scholar 

  15. Wang, X.; Li, W. Z.; Chen, Z. W.; Waje, M.; Yan, Y. S. Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell. J. Power Sources 2006, 158, 154–159.

    Article  CAS  Google Scholar 

  16. Lee, J. S.; Joo, S. H.; Ryoo, R. Synthesis of mesoporous silicas of controlled pore wall thickness and their replication to ordered nanoporous carbons with various pore diameters. J. Am. Chem. Soc. 2002, 124, 1156–1157.

    Article  CAS  Google Scholar 

  17. Wang, C.; Waje, M.; Wang, X.; Tang, J. M.; Haddon, R. C; Yan, Y. S. Proton exchange membrane fuel cells with carbon nanotube based electrodes. Nano Lett. 2004, 4, 345–348.

    Article  CAS  Google Scholar 

  18. Selvaraj, V.; Alagar, M. Ethylene glycol oxidation on Pt and Pt-Ru nanoparticle decorated polythiophene/multiwalled carbon nanotube composites for fuel cell applications. Nanotechnology 2008, 19, 045504.

    Article  Google Scholar 

  19. Bessel, C. A.; Laubernds, K.; Rodriguez, N. M.; Baker, R. T. K. Graphite nanofibers as an electrode for fuel cell applications. J. Phys. Chem. B 2001, 105, 1115–1118.

    Article  CAS  Google Scholar 

  20. Park, I. S.; Park, K. W.; Choi, J. H.; Park, C. R.; Sung, Y. E. Electrocatalytic enhancement of methanol oxidation by graphite nanofibers with a high loading of PtRu alloy nanoparticles. Carbon 2007, 45, 28–33.

    Article  CAS  Google Scholar 

  21. Hyeon, T.; Han, S.; Sung, Y. E.; Park, K. W.; Kim, Y. W. High-performance direct methanol fuel cell electrodes using solid-phase-synthesized carbon nanocoils. Angew. Chem. Int. Edit. 2003, 42, 4352–4356.

    Article  CAS  Google Scholar 

  22. Park, K. W.; Sung, Y. E.; Han, S.; Yun, Y.; Hyeon, T. Origin of the enhanced catalytic activity of carbon nanocoilsupported PtRu alloy electrocatalysts. J. Phys. Chem. B 2004, 108, 939–944.

    Article  CAS  Google Scholar 

  23. Reyhani, A.; Mortazavi, S. Z.; Golikand, A. N.; Moshfegh, A. Z.; Mirershadi, S. The effect of various acids treatment on the purification and electrochemical hydrogen storage of multi-walled carbon nanotubes. J. Power Sources 2008, 183, 539–543.

    Article  CAS  Google Scholar 

  24. Montoro, L. A.; Rosolen, J. M. A multi-step treatment to effective purification of single-walled carbon nanotubes. Carbon 2006, 44, 3293–3301.

    Article  CAS  Google Scholar 

  25. Warakulwit, C.; Majimel, J.; Delville, M. H.; Garrigue, P.; Limtrakul, J.; Kuhn, A. Controlled purification, solubilisation and cutting of carbon nanotubes using phosphomolybdic acid. J. Mater. Chem. 2008, 18, 4056–4061.

    Article  CAS  Google Scholar 

  26. Strong, K. L.; Anderson, D. P.; Lafdi, K.; Kuhn, J. N. Purification process for single-wall carbon nanotubes. Carbon 2003, 41, 1477–1488.

    Article  CAS  Google Scholar 

  27. Joo, J. B.; Kim, Y. J.; Kim, W.; Kim, P.; Yi, J. Simple synthesis of graphitic porous carbon by hydrothermal method for use as a catalyst support in methanol electro-oxidation. Catal. Commun. 2008, 10, 267–271.

    Article  CAS  Google Scholar 

  28. Stöber, W; Fink, A; Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Coll. Interf. Sci. 1968, 26, 62–69.

    Article  Google Scholar 

  29. Inagaki, M.; Okada, Y.; Vignal, V.; Konno, H.; Oshida, K. Graphite formation from a mixture of Fe3O4 and polyvinylchloride at 1000 °C. Carbon, 1998, 36, 1706–1708.

    Article  CAS  Google Scholar 

  30. Joo, J. B.; Kim, P.; Kim, W.; Yi, J. Preparation and application of mesocellular carbon foams to catalyst support in methanol electro-oxidation. Catal. Today 2008, 131, 219–225.

    Article  CAS  Google Scholar 

  31. Reich, S.; Thomsen, C. Raman spectroscopy of graphite. Philos. Trans. R. Soc. Ser. A 2004, 362, 2271–2288.

    Article  CAS  Google Scholar 

  32. Shanahan, P. V.; Xu, L. B.; Liang, C. D.; Waje, M.; Dai, S.; Yan, Y. S. Graphitic mesoporous carbon as a durable fuel cell catalyst support. J. Power Sources 2008, 185, 423–427.

    Article  CAS  Google Scholar 

  33. Shao, Y. Y.; Yin, G. P.; Gao, Y. Z.; Shi, P. F. Durability study of Pt/C and Pt/CNTs catalysts under simulated PEM fuel cell conditions. J. Electrochem. Soc. 2006, 153, A1093–A1097.

    Article  CAS  Google Scholar 

  34. Mukerjee, S.; Srinivasan, S.; Soriaga, M. P.; McBreen, J. Role of structural and electronic properties of Pt and Pt alloys on electrocatalysis of oxygen reduction. J. Electrochem. Soc. 1995, 142, 1409–1422.

    Article  CAS  Google Scholar 

  35. Audo, C.; Lambert, J. F.; Che, M.; Didillon, B. Synthesis of platinum-tin/alumina reforming catalysts from a well-defined platinum-tin precursor complex. Catal. Today 2001, 65, 157–162.

    Article  CAS  Google Scholar 

  36. Coloma, F.; Sepulvedaescribano, A.; Rodriguezreinoso, F. Heat-treated carbon-blacks as supports for platinum catalysts. J. Catal. 1995, 154, 299–305.

    Article  CAS  Google Scholar 

  37. Coloma, F.; Sepulvedaescribano, A.; Fierro, J. L. G.; Rodriguezreinoso, F. Preparation of platinum supported on pregraphitized carbon-blacks. Langmuir 1994, 10, 750–755.

    Article  CAS  Google Scholar 

  38. Kim, P.; Joo, J. B.; Kim, W.; Kim, J.; Song, I. K.; Yi, J. NaBH4-assisted ethylene glycol reduction for preparation of carbon-supported Pt catalyst for methanol electro-oxidation. J Power Sources 2006, 160, 987–990.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongheop Yi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joo, J.B., Kim, N.D., Yun, H.J. et al. Preparation of highly crystalline graphitic nanocarbon for the electro-oxidation of methanol. Nano Res. 4, 92–102 (2011). https://doi.org/10.1007/s12274-010-0053-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0053-1

Keywords

Navigation