Skip to main content
Log in

Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention

  • Review
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Glial cells outnumber neurons in the brain and play important roles in the neuroinflammation that accompanies brain damage in neurodegenerative diseases. In Parkinson’s disease (PD), dopaminergic neuronal loss is accompanied by inflammatory changes in microglia, astrocytes, innate immune cells, and infiltrating peripheral immune cells. Neuroinflammation is probably a fundamental immune response to protect neurons from harm and compensate for neuronal damage, but at the same time, its neurotoxic effects exacerbate neuron damage. Furthermore, neuroinflammatory response is regulated by immune cells, such as microglia, astrocytes, and peripheral immune cells, and by cytokines and chemokines. Accordingly, it is crucial that we understand how such immune cells in the brain regulate neuroinflammatory responses in PD pathology. This review describes the roles played by glia-mediated neuroinflammation in PD, both good and bad, and the therapeutic strategies used to treat PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agarwal S, Yadav A, Chaturvedi RK (2017) Peroxisome proliferator-activated receptors (PPARs) as therapeutic target in neurodegenerative disorders. Biochem Biophys Res Commun 483:1166–1177

    Article  CAS  PubMed  Google Scholar 

  • Agostinho P, Cunha RA, Oliveira C (2010) Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr Pharm Des 16:2766–2778

    Article  CAS  PubMed  Google Scholar 

  • Aid S, Bosetti F (2011) Targeting cyclooxygenases-1 and -2 in neuroinflammation: therapeutic implications. Biochimie 93:46–51

    Article  CAS  PubMed  Google Scholar 

  • Aloisi F (2001) Immune function of microglia. Glia 36:165–179

    Article  CAS  PubMed  Google Scholar 

  • Anderson MA, Burda JE, Ren Y, Ao Y, O’shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV (2016) Astrocyte scar formation aids central nervous system axon regeneration. Nature 532:195–200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Appel SH, Beers DR, Henkel JS (2010) T cell-microglial dialogue in Parkinson’s disease and amyotrophic lateral sclerosis: are we listening? Trends Immunol 31:7–17

    Article  CAS  PubMed  Google Scholar 

  • Attwell D, Buchan AM, Charpak S, Lauritzen M, Macvicar BA, Newman EA (2010) Glial and neuronal control of brain blood flow. Nature 468:232–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barcia C, Ros CM, Annese V, Gomez A, Ros-Bernal F, Aguado-Yera D, Martinez-Pagan ME, De Pablos V, Fernandez-Villalba E, Herrero MT (2011) IFN-gamma signaling, with the synergistic contribution of TNF-alpha, mediates cell specific microglial and astroglial activation in experimental models of Parkinson’s disease. Cell Death Dis 2:e142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayraktar OA, Fuentealba LC, Alvarez-Buylla A, Rowitch DH (2014) Astrocyte development and heterogeneity. Cold Spring Harb Perspect Biol 7:a020362

    Article  CAS  PubMed  Google Scholar 

  • Becerra-Calixto A, Cardona-Gomez GP (2017) The role of astrocytes in neuroprotection after brain stroke: potential in cell therapy. Front Mol Neurosci 10:88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benarroch EE (2013) Microglia: multiple roles in surveillance, circuit shaping, and response to injury. Neurology 81:1079–1088

    Article  PubMed  Google Scholar 

  • Bernardinelli Y, Randall J, Janett E, Nikonenko I, Konig S, Jones EV, Flores CE, Murai KK, Bochet CG, Holtmaat A, Muller D (2014) Activity-dependent structural plasticity of perisynaptic astrocytic domains promotes excitatory synapse stability. Curr Biol 24:1679–1688

    Article  CAS  PubMed  Google Scholar 

  • Boato F, Hechler D, Rosenberger K, Ludecke D, Peters EM, Nitsch R, Hendrix S (2011) Interleukin-1 beta and neurotrophin-3 synergistically promote neurite growth in vitro. J Neuroinflamm 8:183

    Article  CAS  Google Scholar 

  • Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC (1994) Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 172:151–154

    Article  CAS  PubMed  Google Scholar 

  • Bortolanza M, Cavalcanti-Kiwiatkoski R, Padovan-Neto FE, Da-Silva CA, Mitkovski M, Raisman-Vozari R, Del-Bel E (2015) Glial activation is associated with l-DOPA induced dyskinesia and blocked by a nitric oxide synthase inhibitor in a rat model of Parkinson’s disease. Neurobiol Dis 73:377–387

    Article  CAS  PubMed  Google Scholar 

  • Breidert T, Callebert J, Heneka MT, Landreth G, Launay JM, Hirsch EC (2002) Protective action of the peroxisome proliferator-activated receptor-gamma agonist pioglitazone in a mouse model of Parkinson’s disease. J Neurochem 82:615–624

    Article  CAS  PubMed  Google Scholar 

  • Brenneman DE, Schultzberg M, Bartfai T, Gozes I (1992) Cytokine regulation of neuronal survival. J Neurochem 58:454–460

    Article  CAS  PubMed  Google Scholar 

  • Brochard V, Combadiere B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay JM, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S (2009) Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 119:182–192

    CAS  PubMed  Google Scholar 

  • Calabrese V, Santoro A, Monti D, Crupi R, Di Paola R, Latteri S, Cuzzocrea S, Zappia M, Giordano J, Calabrese EJ, Franceschi C (2018) Aging and Parkinson’s Disease: inflammaging, neuroinflammation and biological remodeling as key factors in pathogenesis. Free Radic Biol Med 115:80–91

    Article  CAS  PubMed  Google Scholar 

  • Chen PC, Vargas MR, Pani AK, Smeyne RJ, Johnson DA, Kan YW, Johnson JA (2009) Nrf2-mediated neuroprotection in the MPTP mouse model of Parkinson’s disease: critical role for the astrocyte. Proc Natl Acad Sci USA 106:2933–2938

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Lin W, Zhang Y, Lin L, Chen J, Zeng Y, Zheng M, Zhuang Z, Du H, Chen R, Liu N (2016) IL-10 promotes neurite outgrowth and synapse formation in cultured cortical neurons after the oxygen-glucose deprivation via JAK1/STAT3 pathway. Sci Rep 6:30459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chen S, Liu J (2018) The role of T cells in the pathogenesis of Parkinson’s disease. Prog Neurobiol 169:1–23

    Article  CAS  PubMed  Google Scholar 

  • Cheray M, Joseph B (2018) Epigenetics control microglia plasticity. Front Cell Neurosci 12:243

    Article  PubMed  PubMed Central  Google Scholar 

  • Cherry JD, Olschowka JA, O’banion MK (2014) Neuroinflammation and M2 microglia: the good, the bad, and the inflamed. J Neuroinflamm 11:98

    Article  CAS  Google Scholar 

  • Chhor V, Le Charpentier T, Lebon S, Ore MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Savman K, Mallard C, Gressens P, Fleiss B (2013) Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro. Brain Behav Immun 32:70–85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi SY, Son TG, Park HR, Jang YJ, Oh SB, Jin B, Lee J (2012) Naphthazarin has a protective effect on the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson’s disease model. J Neurosci Res 90:1842–1849

    Article  CAS  PubMed  Google Scholar 

  • Collins LM, Toulouse A, Connor TJ, Nolan YM (2012) Contributions of central and systemic inflammation to the pathophysiology of Parkinson’s disease. Neuropharmacology 62:2154–2168

    Article  CAS  PubMed  Google Scholar 

  • Curran CS, Bertics PJ (2012) Eosinophils in glioblastoma biology. J Neuroinflamm 9:11

    Article  CAS  Google Scholar 

  • Dehmer T, Heneka MT, Sastre M, Dichgans J, Schulz JB (2004) Protection by pioglitazone in the MPTP model of Parkinson’s disease correlates with I kappa B alpha induction and block of NF kappa B and iNOS activation. J Neurochem 88:494–501

    Article  CAS  PubMed  Google Scholar 

  • Doorn KJ, Moors T, Drukarch B, Van De Berg W, Lucassen PJ, Van Dam AM (2014) Microglial phenotypes and toll-like receptor 2 in the substantia nigra and hippocampus of incidental Lewy body disease cases and Parkinson’s disease patients. Acta Neuropathol Commun 2:90

    PubMed  PubMed Central  Google Scholar 

  • Eikelenboom P, Van Exel E, Hoozemans JJ, Veerhuis R, Rozemuller AJ, Van Gool WA (2010) Neuroinflammation—an early event in both the history and pathogenesis of Alzheimer’s disease. Neurodegener Dis 7:38–41

    Article  CAS  PubMed  Google Scholar 

  • Episcopo FL, Tirolo C, Testa N, Caniglia S, Morale MC, Marchetti B (2013) Reactive astrocytes are key players in nigrostriatal dopaminergic neurorepair in the MPTP mouse model of Parkinson’s disease: focus on endogenous neurorestoration. Curr Aging Sci 6:45–55

    Article  CAS  Google Scholar 

  • Fawcett JW, Asher RA (1999) The glial scar and central nervous system repair. Brain Res Bull 49:377–391

    Article  CAS  PubMed  Google Scholar 

  • Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86

    Article  CAS  PubMed  Google Scholar 

  • Gan L, Vargas MR, Johnson DA, Johnson JA (2012) Astrocyte-specific overexpression of Nrf2 delays motor pathology and synuclein aggregation throughout the CNS in the alpha-synuclein mutant (A53T) mouse model. J Neurosci 32:17775–17787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gelders G, Baekelandt V, Van Der Perren A (2018) Linking neuroinflammation and neurodegeneration in Parkinson’s disease. J Immunol Res 2018:4784268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorshkov K, Aguisanda F, Thorne N, Zheng W (2018) Astrocytes as targets for drug discovery. Drug Discov Today 23:673–680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Graeber MB (2010) Changing face of microglia. Science 330:783–788

    Article  CAS  PubMed  Google Scholar 

  • Gu XL, Long CX, Sun L, Xie C, Lin X, Cai H (2010) Astrocytic expression of Parkinson’s disease-related A53T alpha-synuclein causes neurodegeneration in mice. Mol Brain 3:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harms AS, Barnum CJ, Ruhn KA, Varghese S, Trevino I, Blesch A, Tansey MG (2011) Delayed dominant-negative TNF gene therapy halts progressive loss of nigral dopaminergic neurons in a rat model of Parkinson’s disease. Mol Ther 19:46–52

    Article  CAS  PubMed  Google Scholar 

  • Harry GJ, Kraft AD (2008) Neuroinflammation and microglia: considerations and approaches for neurotoxicity assessment. Expert Opin Drug Metab Toxicol 4:1265–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashida K, Kitao Y, Sudo H, Awa Y, Maeda S, Mori K, Takahashi R, Iinuma M, Hori O (2012) ATF6alpha promotes astroglial activation and neuronal survival in a chronic mouse model of Parkinson’s disease. PLoS ONE 7:e47950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirsch EC, Hunot S (2009) Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 8:382–397

    Article  CAS  PubMed  Google Scholar 

  • Hoenen C, Gustin A, Birck C, Kirchmeyer M, Beaume N, Felten P, Grandbarbe L, Heuschling P, Heurtaux T (2016) Alpha-synuclein proteins promote pro-inflammatory cascades in microglia: stronger effects of the A53T mutant. PLoS ONE 11:e0162717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huhner L, Rilka J, Gilsbach R, Zhou X, Machado V, Spittau B (2017) Interleukin-4 protects dopaminergic neurons in vitro but is dispensable for MPTP-induced neurodegeneration in vivo. Front Mol Neurosci 10:62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iannaccone S, Cerami C, Alessio M, Garibotto V, Panzacchi A, Olivieri S, Gelsomino G, Moresco RM, Perani D (2013) In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord 19:47–52

    Article  CAS  PubMed  Google Scholar 

  • Imamura K, Hishikawa N, Sawada M, Nagatsu T, Yoshida M, Hashizume Y (2003) Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol 106:518–526

    Article  CAS  PubMed  Google Scholar 

  • Jakel RJ, Townsend JA, Kraft AD, Johnson JA (2007) Nrf2-mediated protection against 6-hydroxydopamine. Brain Res 1144:192–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janda E, Boi L, Carta AR (2018) Microglial phagocytosis and its regulation: a therapeutic target in Parkinson’s disease? Front Mol Neurosci 11:144

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Joers V, Tansey MG, Mulas G, Carta AR (2017) Microglial phenotypes in Parkinson’s disease and animal models of the disease. Prog Neurobiol 155:57–75

    Article  CAS  PubMed  Google Scholar 

  • Kim C, Ho DH, Suk JE, You S, Michael S, Kang J, Joong Lee S, Masliah E, Hwang D, Lee HJ, Lee SJ (2013a) Neuron-released oligomeric alpha-synuclein is an endogenous agonist of TLR2 for paracrine activation of microglia. Nat Commun 4:1562

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Choi DJ, Jeong HK, Kim J, Kim DW, Choi SY, Park SM, Suh YH, Jou I, Joe EH (2013b) DJ-1 facilitates the interaction between STAT1 and its phosphatase, SHP-1, in brain microglia and astrocytes: a novel anti-inflammatory function of DJ-1. Neurobiol Dis 60:1–10

    Article  CAS  PubMed  Google Scholar 

  • Kim ME, Lee JY, Lee KM, Park HR, Lee E, Lee Y, Lee JS, Lee J (2016) Neuroprotective effect of bee venom is mediated by reduced astrocyte activation in a subchronic MPTP-induced model of Parkinson's disease. Arch Pharm Res 39:1160–1170

    CAS  Google Scholar 

  • Klegeris A, Pelech S, Giasson BI, Maguire J, Zhang H, Mcgeer EG, Mcgeer PL (2008) Alpha-synuclein activates stress signaling protein kinases in THP-1 cells and microglia. Neurobiol Aging 29:739–752

    Article  CAS  PubMed  Google Scholar 

  • Koprich JB, Reske-Nielsen C, Mithal P, Isacson O (2008) Neuroinflammation mediated by IL-1beta increases susceptibility of dopamine neurons to degeneration in an animal model of Parkinson’s disease. J Neuroinflamm 5:8

    Article  CAS  Google Scholar 

  • Kreft M, Bak LK, Waagepetersen HS, Schousboe A (2012) Aspects of astrocyte energy metabolism, amino acid neurotransmitter homoeostasis and metabolic compartmentation. ASN Neuro 4:20. https://doi.org/10.1042/AN20120007

    Article  CAS  Google Scholar 

  • Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312–318

    Article  CAS  PubMed  Google Scholar 

  • Lan X, Han X, Li Q, Yang QW, Wang J (2017) Modulators of microglial activation and polarization after intracerebral haemorrhage. Nat Rev Neurol 13:420–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lastres-Becker I, Ulusoy A, Innamorato NG, Sahin G, Rabano A, Kirik D, Cuadrado A (2012) alpha-Synuclein expression and Nrf2 deficiency cooperate to aggravate protein aggregation, neuronal death and inflammation in early-stage Parkinson’s disease. Hum Mol Genet 21:3173–3192

    Article  CAS  PubMed  Google Scholar 

  • Ledesma MD, Galvan C, Hellias B, Dotti C, Jensen PH (2002) Astrocytic but not neuronal increased expression and redistribution of parkin during unfolded protein stress. J Neurochem 83:1431–1440

    Article  CAS  PubMed  Google Scholar 

  • Lee HJ, Suk JE, Patrick C, Bae EJ, Cho JH, Rho S, Hwang D, Masliah E, Lee SJ (2010) Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem 285:9262–9272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee E, Park HR, Ji ST, Lee Y, Lee J (2014) Baicalein attenuates astroglial activation in the 1-methyl-4-phenyl-1,2,3,4-tetrahydropyridine-induced Parkinson's disease model by downregulating the activations of nuclear factor-kappaB, ERK, and JNK. J Neurosci Res 92:130–139

    Article  CAS  PubMed  Google Scholar 

  • Lee KW, Woo JM, Im JY, Park ES, He L, Ichijo H, Junn E, Mouradian MM (2015a) Apoptosis signal-regulating kinase 1 modulates the phenotype of alpha-synuclein transgenic mice. Neurobiol Aging 36:519–526

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Chun HJ, Lee KM, Jung YS, Lee J (2015b) Silibinin suppresses astroglial activation in a mouse model of acute Parkinson’s disease by modulating the ERK and JNK signaling pathways. Brain Res 1627:233–242

    Article  CAS  PubMed  Google Scholar 

  • Lee KM, Lee Y, Chun HJ, Kim AH, Kim JY, Lee JY, Ishigami A, Lee J (2016) Neuroprotective and anti-inflammatory effects of morin in a murine model of Parkinson’s disease. J Neurosci Res 94:865–878

    Article  CAS  PubMed  Google Scholar 

  • Lee Y, Cho JH, Lee S, Lee W, Chang SC, Chung HY, Moon HR, Lee J (2019) Neuroprotective effects of MHY908, a PPAR alpha/gamma dual agonist, in a MPTP-induced Parkinson's disease model. Brain Res 1704:47–58

    Article  CAS  PubMed  Google Scholar 

  • Li R, Huang YG, Fang D, Le WD (2004) (-)-Epigallocatechin gallate inhibits lipopolysaccharide-induced microglial activation and protects against inflammation-mediated dopaminergic neuronal injury. J Neurosci Res 78:723–731

    Article  CAS  PubMed  Google Scholar 

  • Liddelow SA, Barres BA (2017) Reactive astrocytes: production, function, and therapeutic potential. Immunity 46:957–967

    Article  CAS  PubMed  Google Scholar 

  • Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Munch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, Barres BA (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481–487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Litteljohn D, Mangano E, Shukla N, Hayley S (2009) Interferon-gamma deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat. Neuroscience 164:1894–1906

    Article  CAS  PubMed  Google Scholar 

  • Loane DJ, Byrnes KR (2010) Role of microglia in neurotrauma. Neurotherapeutics 7:366–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucas SM, Rothwell NJ, Gibson RM (2006) The role of inflammation in CNS injury and disease. Br J Pharmacol 147(Suppl 1):S232–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maccormac LP, Muqit MM, Faulkes DJ, Wood NW, Latchman DS (2004) Reduction in endogenous parkin levels renders glial cells sensitive to both caspase-dependent and caspase-independent cell death. Eur J Neurosci 20:2038–2048

    Article  PubMed  Google Scholar 

  • Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M (2004) The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 25:677–686

    Article  CAS  PubMed  Google Scholar 

  • Martinez FO, Sica A, Mantovani A, Locati M (2008) Macrophage activation and polarization. Front Biosci 13:453–461

    Article  CAS  PubMed  Google Scholar 

  • Mccoy MK, Ruhn KA, Martinez TN, Mcalpine FE, Blesch A, Tansey MG (2008) Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther 16:1572–1579

    Article  CAS  PubMed  Google Scholar 

  • Mcguire SO, Ling ZD, Lipton JW, Sortwell CE, Collier TJ, Carvey PM (2001) Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 169:219–230

    Article  CAS  PubMed  Google Scholar 

  • Mirza B, Hadberg H, Thomsen P, Moos T (2000) The absence of reactive astrocytosis is indicative of a unique inflammatory process in Parkinson’s disease. Neuroscience 95:425–432

    Article  CAS  PubMed  Google Scholar 

  • Mogi M, Harada M, Kondo T, Riederer P, Inagaki H, Minami M, Nagatsu T (1994) Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 180:147–150

    Article  CAS  PubMed  Google Scholar 

  • Mullett SJ, Hinkle DA (2009) DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33:28–36

    Article  PubMed  Google Scholar 

  • Nakagawa Y, Chiba K (2015) Diversity and plasticity of microglial cells in psychiatric and neurological disorders. Pharmacol Ther 154:21–35

    Article  CAS  PubMed  Google Scholar 

  • Neal M, Richardson JR (2018) Epigenetic regulation of astrocyte function in neuroinflammation and neurodegeneration. Biochim Biophys Acta Mol Basis Dis 1864:432–443

    Article  CAS  PubMed  Google Scholar 

  • Niranjan R (2014) The role of inflammatory and oxidative stress mechanisms in the pathogenesis of Parkinson’s disease: focus on astrocytes. Mol Neurobiol 49:28–38

    Article  CAS  PubMed  Google Scholar 

  • Niranjan R (2018) Recent advances in the mechanisms of neuroinflammation and their roles in neurodegeneration. Neurochem Int 120:13–20

    Article  CAS  PubMed  Google Scholar 

  • Ouchi Y, Yoshikawa E, Sekine Y, Futatsubashi M, Kanno T, Ogusu T, Torizuka T (2005) Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 57:168–175

    Article  CAS  PubMed  Google Scholar 

  • Pekny M, Wilhelmsson U, Pekna M (2014) The dual role of astrocyte activation and reactive gliosis. Neurosci Lett 565:30–38

    Article  CAS  PubMed  Google Scholar 

  • Pisanu A, Lecca D, Mulas G, Wardas J, Simbula G, Spiga S, Carta AR (2014) Dynamic changes in pro- and anti-inflammatory cytokines in microglia after PPAR-gamma agonist neuroprotective treatment in the MPTPp mouse model of progressive Parkinson’s disease. Neurobiol Dis 71:280–291

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran K, Chapman GD, Gunasekar PG (2011) alpha-Synuclein overexpression enhances manganese-induced neurotoxicity through the NF-kappaB-mediated pathway. Toxicol Mech Methods 21:435–443

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2016) How neuroinflammation contributes to neurodegeneration. Science 353:777–783

    Article  CAS  PubMed  Google Scholar 

  • Rappold PM, Tieu K (2010) Astrocytes and therapeutics for Parkinson’s disease. Neurotherapeutics 7:413–423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL (2007) Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 82:1083–1094

    Article  CAS  PubMed  Google Scholar 

  • Rojo AI, Mcbean G, Cindric M, Egea J, Lopez MG, Rada P, Zarkovic N, Cuadrado A (2014) Redox control of microglial function: molecular mechanisms and functional significance. Antioxid Redox Signal 21:1766–1801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saijo K, Winner B, Carson CT, Collier JG, Boyer L, Rosenfeld MG, Gage FH, Glass CKA (2009) Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death. Cell 137:47–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawada M, Imamura K, Nagatsu T (2006) Role of cytokines in inflammatory process in Parkinson’s disease. Springer, Vienna, pp 273–381

    Google Scholar 

  • Schnegg CI, Kooshki M, Hsu FC, Sui G, Robbins ME (2012) PPARdelta prevents radiation-induced proinflammatory responses in microglia via transrepression of NF-kappaB and inhibition of the PKCalpha/MEK1/2/ERK1/2/AP-1 pathway. Free Radic Biol Med 52:1734–1743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon C, Gotz M, Dimou L (2011) Progenitors in the adult cerebral cortex: cell cycle properties and regulation by physiological stimuli and injury. Glia 59:869–881

    Article  PubMed  Google Scholar 

  • Sofroniew MV (2015) Astrocyte barriers to neurotoxic inflammation. Nat Rev Neurosci 16:249–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Streit WJ, Mrak RE, Griffin WS (2004) Microglia and neuroinflammation: a pathological perspective. J Neuroinflamm 1:14

    Article  CAS  Google Scholar 

  • Suh HS, Zhao ML, Derico L, Choi N, Lee SC (2013) Insulin-like growth factor 1 and 2 (IGF1, IGF2) expression in human microglia: differential regulation by inflammatory mediators. J Neuroinflamm 10:37

    Article  CAS  Google Scholar 

  • Surmeier DJ, Guzman JN, Sanchez J, Schumacker PT (2012) Physiological phenotype and vulnerability in Parkinson’s disease. Cold Spring Harb Perspect Med 2:a009290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q, Liu Y, Zhou J (2015a) Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl Neurodegener 4:19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang WY, Tan MS, Yu JT, Tan L (2015b) Role of pro-inflammatory cytokines released from microglia in Alzheimer’s disease. Ann Transl Med 3:136

    PubMed  PubMed Central  Google Scholar 

  • Wang YL, Ju B, Zhang YZ, Yin HL, Liu YJ, Wang SS, Zeng ZL, Yang XP, Wang HT, Li JF (2017) Protective effect of curcumin against oxidative stress-induced injury in rats with parkinson’s disease through the Wnt/beta-catenin signaling pathway. Cell Physiol Biochem 43:2226–2241

    Article  CAS  PubMed  Google Scholar 

  • Wilms H, Rosenstiel P, Romero-Ramos M, Arlt A, Schafer H, Seegert D, Kahle PJ, Odoy S, Claasen JH, Holzknecht C, Brandenburg LO, Deuschl G, Schreiber S, Kirik D, Lucius R (2009) Suppression of MAP kinases inhibits microglial activation and attenuates neuronal cell death induced by alpha-synuclein protofibrils. Int J Immunopathol Pharmacol 22:897–909

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Zhang A, Zhu Y, He W, Di W, Fang Y, Shi X (2018) MFG-E8 reverses microglial-induced neurotoxic astrocyte (A1) via NF-kappaB and PI3 K-Akt pathways. J Cell Physiol 234:904–914

    Article  CAS  PubMed  Google Scholar 

  • Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP (2012) Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson's disease phenotype in the mouse. Neurochem Res 37:875–884

    Article  CAS  PubMed  Google Scholar 

  • Yang TT, Lin C, Hsu CT, Wang TF, Ke FY, Kuo YM (2013) Differential distribution and activation of microglia in the brain of male C57BL/6 J mice. Brain Struct Funct 218:1051–1060

    Article  CAS  PubMed  Google Scholar 

  • Yang JS, Wu XH, Yu HG, Teng LS (2017) Tangeretin inhibits neurodegeneration and attenuates inflammatory responses and behavioural deficits in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson's disease dementia in rats. Inflammopharmacology 25:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yun SP, Kam TI, Panicker N, Kim S, Oh Y, Park JS, Kwon SH, Park YJ, Karuppagounder SS, Park H, Kim S, Oh N, Kim NA, Lee S, Brahmachari S, Mao X, Lee JH, Kumar M, An D, Kang SU, Lee Y, Lee KC, Na DH, Kim D, Lee SH, Roschke VV, Liddelow SA, Mari Z, Barres BA, Dawson VL, Lee S, Dawson TM, Ko HS (2018) Block of A1 astrocyte conversion by microglia is neuroprotective in models of Parkinson’s disease. Nat Med 24:931–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG, Barres BA (2012) Genomic analysis of reactive astrogliosis. J Neurosci 32:6391–6410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang QS, Heng Y, Mou Z, Huang JY, Yuan YH, Chen NH (2017) Reassessment of subacute MPTP-treated mice as animal model of Parkinson’s disease. Acta Pharmacol Sin 38:1317–1328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) (Grant no. 2018R1D1A1B07043493).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaewon Lee.

Ethics declarations

Conflict of interest

The authors have no potential conflict of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y., Lee, S., Chang, SC. et al. Significant roles of neuroinflammation in Parkinson’s disease: therapeutic targets for PD prevention. Arch. Pharm. Res. 42, 416–425 (2019). https://doi.org/10.1007/s12272-019-01133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-019-01133-0

Keywords

Navigation