Skip to main content
Log in

Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The binding abilities of scutellarin (Scu) and scutellarein (Scue) with bovine serum albumin (BSA) were investigated using equilibrium dialysis, high performance liquid chromatography, fluorescence spectroscopy, competitive site marker and molecular docking. The results showed that the average protein binding ratios of Scu and Scue with BSA were (79.85 ± 1.83) and (85.49 ± 1.21) % respectively. Under simulated physiological conditions, the fluorescence data indicated that Scu and Scue bound with BSA through a static mechanism. The thermodynamic parameters indicated that the interactions of Scu-BSA and Scue-BSA mainly occurred by van der Waals forces and hydrogen bonds and it was easier for Scue to bind with BSA than Scu, indicating that the glucuronic acid molecule in Scu decreased the binding affinity. Site competitive marker experiments showed that the binding sites of Scu and Scue mainly located within the sub-domain IIA of BSA. Furthermore, molecular docking studies indicated that one BSA could bind three Scue, while one BSA could carry only two Scu. All these results clearly indicated the interactions of Scu and Scue with BSA, which will lay the foundation for further research to determine the pharmacology and pharmacodynamics of Scu and Scue for treating ischemic cerebrovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Che, Q.M., Y. Chen, L.Y. Pan, and H. He. 2006. Scutellarein’s pharmacokinetics in rats. Chinese Journal of New Drugs 15: 1557–1561.

    CAS  Google Scholar 

  • Curry, S., H. Mandelkow, P. Brick, and N. Franks. 1998. Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural Biology 5: 827–835.

    Article  CAS  PubMed  Google Scholar 

  • Curry, S., P. Brick, and N.P. Franks. 1999. Fatty acid binding to human serum albumin: New insights from crystallographic studies. Biochimica et Biophysica Acta 1441: 131–140.

    Article  CAS  PubMed  Google Scholar 

  • Ding, F., W. Liu, X. Zhang, L.J. Wu, L. Zhang, and Y. Sun. 2010. Identification of pyrazosulfuron-ethyl binding affinity and binding site subdomain IIA in human serum albumin by spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 75: 1088–1094.

    Article  Google Scholar 

  • Feng, Z.Q., J. Han, Z.Y. Xie, Q.F. Liao, and L. Zhang. 2012. Determination of plasma protein binding rate of multicomponent in Scutellaria baicalensis Georgi. Chinese Pharmacological Bulletin 28: 286–289.

    CAS  Google Scholar 

  • Gafner, S., C. Bergeron, L.L. Batcha, J. Reich, J.T. Arnason, J.E. Burdette, J.M. Pezzuto, and C.K. Angerhofer. 2003. Inhibition of [3H]-LSD binding to 5-HT7 receptors by flavonoids from Scutellaria lateriflora. Journal of Natural Products 66: 535–537.

    Article  CAS  PubMed  Google Scholar 

  • Ghuman, J., P.A. Zunszain, I. Petitpas, A.A. Bhattacharya, M. Otagiri, and S. Curry. 2005. Structural basis of the drug-binding specificity of human serum albumin. Journal of Molecular Biology 353: 38–52.

    Article  CAS  PubMed  Google Scholar 

  • Goh, D., Y.H. Lee, and E.S. Ong. 2005. Inhibitory effects of a chemically standardized extract from Scutellaria barbata in human colon cancer cell lines, LoVo. Journal of Agricultural and Food Chemistry 53: 8197–8204.

    Article  CAS  PubMed  Google Scholar 

  • He, X.M., and D.C. Carter. 1992. Atomic structure and chemistry of human serum albumin. Nature 358: 209–215.

    Article  CAS  PubMed  Google Scholar 

  • Hong, H., and G.Q. Liu. 2004. Protection against hydrogen peroxide-induced cytotoxicity in PC12 cells by scutellarin. Life Sciences 74: 2959–2973.

    Article  CAS  PubMed  Google Scholar 

  • Hu, Y.J., Y. Wang, Y. Ou-Yang, J. Zhou, and Y. Liu. 2010. Characterize the interaction between naringenin and bovine serum albumin using spectroscopic approach. Journal of Luminescence 130: 1394–1399.

    Article  CAS  Google Scholar 

  • Huang, B.X., H.Y. Kim, and C. Dass. 2004. Probing three-dimensional structure of bovine serum albumin by chemical cross-linking and mass spectrometry. Journal of the American Society for Mass Spectrometry 15: 1237–1247.

    Article  CAS  PubMed  Google Scholar 

  • Li, N.G., S.L. Song, M.Z. Shen, Y.P. Tang, Z.H. Shi, H. Tang, Q.P. Shi, Y.F. Fu, and J.A. Duan. 2012. Mannich bases of scutellarein as thrombin-inhibitors: Design, synthesis, biological activity and solubility. Bioorganic & Medicinal Chemistry 20: 6919–6923.

    Article  CAS  Google Scholar 

  • Li, N.G., M.Z. Shen, Z.J. Wang, Y.P. Tang, Z.H. Shi, Y.F. Fu, Q.P. Shi, H. Tang, and J.A. Duan. 2013. Design, synthesis and biological evaluation of glucose-containing scutellarein derivatives as neuroprotective agents based on metabolic mechanism of scutellarin in vivo. Bioorganic & Medicinal Chemistry Letters 23: 102–106.

    Article  Google Scholar 

  • Li, S., K. Huang, M. Zhong, J. Guo, W.Z. Wang, and R. Zhu. 2010. Comparative studies on the interaction of caffeic acid, chlorogenic acid and ferulic acid with bovine serum albumin. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 77: 680–686.

    Article  Google Scholar 

  • Li, W., A.P. Zhang, J.Y. Yang, and B.S. Yang. 2007. Study on the interaction between scutellarin and bovine serum albumin. Chinese Remedies & Clinics 7: 9.

    Google Scholar 

  • Liu, H., X. Yang, R. Tang, J. Liu, and H. Xu. 2005a. Effect of scutellarin on nitric oxide production in early stages of neuron damage induced by hydrogen peroxide. Pharmacological Research 51: 205–210.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Q.F., G.A. Luo, Y.M. Wang, Y.H. Ma, and R.L. Zhang. 2005b. Pharmacokinetics of breviscapine in dogs and rabbits following single intravenous administration. Journal of Chinese Medicinal Materials 28: 913–916.

    PubMed  Google Scholar 

  • Majorek, K.A., P.J. Porebski, A. Dayal, M.D. Zimmerman, K. Jablonska, A.J. Stewart, M. Chruszcz, and W. Minor. 2012. Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Molecular Immunology 52: 174–182.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mehvar, R. 2005. Role of protein binding in pharmacokinetics. American Journal Pharmaceutical Education 69: 1526.

    Article  Google Scholar 

  • Paul, B.K., and N. Guchhailt. 2011. Modulation of prototropic activity and rotational relaxation dynamics of a cationic biological photosensitizer within the motionally constrained bio-environment of a protein. The Journal of Physical Chemistry B 115: 10322–10334.

    Article  CAS  PubMed  Google Scholar 

  • Paul, B.K., A. Samanta, and N. Guchhailt. 2010. Exploring hydrophobic subdomain IIA of the protein bovine serum albumin in the native, intermediate, unfolded, and refolded states by a small fluorescence molecular reporter. The Journal of Physical Chemistry B 114: 6183–6196.

    Article  CAS  PubMed  Google Scholar 

  • Paul, B.K., D. Ray, and N. Guchhait. 2012. Spectral deciphering of the interaction between an intramolecular hydrogen bonded ESIPT drug, 3,5-dichlorosalicylic acid, and a model transport protein. Physical Chemistry Chemical Physics 14: 8892–8902.

    Article  CAS  PubMed  Google Scholar 

  • Paul, B.K., D. Ray, and N. Guchhait. 2013. Unraveling the binding interaction and kinetics of a prospective anti-HIV drug with a model transport protein: results and challenges. Physical Chemistry Chemical Physics 15: 1275–1287.

    Article  CAS  PubMed  Google Scholar 

  • Pouzet, B. 2002. SB-258741: a 5-HT7 receptor antagonist of potential clinical interest. CNS Drug Reviews 8: 90–100.

    Article  CAS  PubMed  Google Scholar 

  • Qian, L.H., M.Z. Shen, H. Tang, Y.P. Tang, L. Zhang, Y.F. Fu, Q.P. Shi, and N.G. Li. 2012. Synthesis and protective effect of scutellarein on focal cerebral ischemia/reperfusion in rats. Molecules 17: 10667–10674.

    Article  CAS  PubMed  Google Scholar 

  • Qian, X.U., D.D. Deng, Z.J. Cao, Q. Xie, J.Y. Liang, and J.Z. Lu. 2010. Interaction between serum albumin and four flavones by fluorescence spectroscopy and molecular docking. Chinese Journal of Analytical Chemistry 38: 483–487.

    Article  Google Scholar 

  • Qu, J., Y.M. Wang, and G.A. Luo. 2001. Determination of scutellarin in Erigeron breviscapus extract by liquid chromatography-tandem mass spectrometry. Journal of Chromatography A 919: 437–441.

    Article  CAS  PubMed  Google Scholar 

  • Rawel, H.M., S.K. Frey, K. Meidtner, J. Kroll, and F.J. Schweigert. 2006. Determining the binding affinities of phenolic compounds to proteins by quenching of the intrinsic tryptophan fluorescence. Molecular Nutrition & Food Research 50: 705–713.

    Article  CAS  Google Scholar 

  • Ross, D.P., and S. Subramanian. 1981. Thermodynamics of protein association reaction: Contributing to stability. Biochemistry 20: 3096–3102.

    Article  CAS  PubMed  Google Scholar 

  • Samari, F., B. Hemmateenejad, M. Shamsipur, M. Rashidi, and H. Samouei. 2012. Affinity of two novel five-coordinated anticancer Pt(II) complexes to human and bovine serum albumins: A spectroscopic approach. Inorganic Chemistry 51: 3454–3464.

    Article  CAS  PubMed  Google Scholar 

  • Sekula, B., K. Zielinkin, and A. Bujacz. 2013. Crystallographic studies of the complexes of bovine and equine serum albumin with 3,5-diiodosalicylic acid. International Journal of Biological Macromolecules 60: 316–324.

    Article  CAS  PubMed  Google Scholar 

  • Shen, M.-Z., Z.-H. Shi, N.-G. Li, H. Tang, Q.-P. Shi, Y.-P. Tang, J.-P. Yang, and J.-A. Duan. 2013. Efficient synthesis of 6-O-methyl-scutellarein from scutellarin via selective methylation. Letters in Organic Chemistry 10: 733–737.

    Article  CAS  Google Scholar 

  • Shi, Q.-P., Z.-H. Shi, N.-G. Li, Y.-P. Tang, H. Tang, W. Zhang, M.-Z. Shen, Z.-X. Dong, P.-X. Zhang, J.-P. Yang, and J.-A. Duan. 2014. Efficient chemical synthesis of a scutellarein derivative containing morpholine ring. Letters in Organic Chemistry 11: 590–595.

    Article  CAS  Google Scholar 

  • Sjoholm, I., B. Ekman, A. Kober, I. Ljungstedt-Pahlman, B. Seiving, and T. Sjodin. 1979. Binding of durg to human serum albumin: XI The specificity of three binding sites as studied with albumin immobilized in microparticles. Molecular Pharmacology 16: 16767–16777.

    Google Scholar 

  • Song, S.L., N.G. Li, Y.P. Tang, Z.J. Wang, L.H. Qian, H. Tang, and J.A. Duan. 2012. Design, synthesis and biological evaluation of scutellarein derivatives as potential anti-Alzheimer’s disease candidates based on metabolic mechanism. Letters in Drug Design & Discovery 9: 78–83.

    Article  CAS  Google Scholar 

  • Sułkowska, A. 2002. Interaction of drugs with bovine and human serum albumin. Journal of Molecular Structure 614: 227–232.

    Article  Google Scholar 

  • Wagner, J. 1981. History of pharmacokinetics. Pharmacology & Therapeutics 12: 537–562.

    Article  CAS  Google Scholar 

  • Wu, J.W., L.C. Lin, S.C. Hung, C.W. Chi, and T.H. Tsai. 2007. Analysis of silibinin in rat plasma and bile for hepatobiliary excretion and oral bioavailability application. Journal of Pharmaceutical and Biomedical Analysis 45: 635–641.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, J.B., H. Cao, Y.F. Wang, K. Yamamoto, and X.L. Wei. 2010. Structure-affinity relationship of flavones on binding to serum albumins: Effect of hydroxyl groups on ring A. Molecular Nutrition & Food Research 54: S253–S260.

    Article  CAS  Google Scholar 

  • Zhang, G., Q. Que, J. Pan, and J. Guo. 2008. Study of the interaction between icariin and human serum albumin by fluorescence spectroscopy. Journal of Molecular Structure 881: 132–138.

    Article  CAS  Google Scholar 

  • Zhang, J.M., Q.M. Che, S.Z. Li, and T.H. Zhou. 2003. Study on metabolism of scutellarin in rats by HPLC-MS and HPLC-NMR. Journal of Asian Natural Products Research 5: 249–256.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y.P., S.Y. Shi, X.Q. Chen, W. Zhang, K. Huang, and M.J. Peng. 2011. Investigation on the interaction between ilaprazole and bovine serum albumin without or with different C-ring flavonoids from the viewpoint of food drug interference. Journal of Agricultural and Food Chemistry 59: 8499–8506.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, L., W.Z. Ju, Z.X. Liu, and H.S. Tan. 2011. Determination of plasma protein binding rate of multicomponent in Dengzhanxixin injection. Chinese Pharmacological Bulletin 27: 719–722.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (81274058, 21302225), the Program for New Century Excellent Talents by the Ministry of Education (NCET-12-0741), 333 High-level Talents Training Project Funded by Jiangsu Province, Six Talents Project Funded by Jiangsu Province (2013-YY-010), Technology Innovation Venture Fund by Nanjing University of Chinese Medicine (CX201301), Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization (ZDXMHT-1-13).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nian-Guang Li or Yu-Ping Tang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, H., Shi, ZH., Li, NG. et al. Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques. Arch. Pharm. Res. 38, 1789–1801 (2015). https://doi.org/10.1007/s12272-014-0541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-014-0541-z

Keywords

Navigation