Skip to main content
Log in

Expression system for production of bioactive compounds, recombinant human adiponectin, in the silk glands of transgenic silkworms

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Adiponectin is an adipocyte hormone involved in glucose and lipid metabolism. The aim of this study was to develop a human adiponectin expression system in transgenic silkworm using a human adiponectin expression vector. The silk gland of the silkworm is a highly specialized organ that has the wonderful ability to synthesize and secrete silk protein. To express human adiponectin in the silk gland of transgenic silkworm, targeting vectors pB-A3-adiponectin-IRES-RFP and pB-Ser1-adiponectin-IRES-RFP were constructed and then introduced into the silkworm pupa. The transgenic silkworms were verified by PCR and then generated. The level of adiponectin in the transgenic silkworm was 6–10 ng/50 mg of freeze-dried powder, and western blotting using an antibody against human adiponectin demonstrated a specific band with a molecular weight of 30 kDa in the silkworm. These results showed that human adiponectin introduced into the silkworm genome was expressed successfully on a large-scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arita, Y., S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, J. Miyagawa, K. Hotta, I. Shimomura, T. Nakamura, K. Miyaoka, H. Kuriyama, M. Nishida, S. Yamashita, K. Okubo, K. Matsubara, M. Muraguchi, Y. Ohmoto, T. Funahashi, and Y. Matsuzawa. 1999. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochemical and Biophysical Research Communications 257: 79–83.

    Article  CAS  PubMed  Google Scholar 

  • Dyck, M.K., D. Lacroix, F. Pothier, and M.A. Sirard. 2003. Making recombinant proteins in animals-different systems, different applications. Trends in Biotechnology 21: 394–399.

    Article  CAS  PubMed  Google Scholar 

  • Elick, T.A., C.A. Bauser, and M.J. Fraser. 1996. Excision of the piggyBac transposable element in vitro is a precise event that is enhanced by the expression of its encoded transposase. Genetica 98: 33–41.

    Article  CAS  PubMed  Google Scholar 

  • Fraser, M.J., T. Ciszczon, T. Elick, and C. Bauser. 1996. Precise excision of TTAA-specific lepidopteran transposons piggyBac (IFP2) and tagalong (TFP3) from the baculovirus genome in cell lines from two species of Lepidoptera. Insect Molecular Biology 5: 141–151.

    Article  CAS  PubMed  Google Scholar 

  • Fruebis, J., T.S. Tsao, S. Javorschi, D. Ebbets-Reed, M.R. Erickson, F.T. Yen, B.E. Bihain, and H.F. Lodish. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proceedings of the National Academy of Sciences of the USA 98: 2005–2010.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Guo, X.Y., L. Dong, S.P. Wang, T.Q. Guo, J.Y. Wang, and C.D. Lu. 2004. Introduction of foreign genes into silkworm eggs by electroporation and its application in transgenic vector test. Acta Biochimica et Biophysica Sinica (Shanghai) 36: 323–330.

    Article  Google Scholar 

  • Hu, E., P. Liang, and B.M. Spiegelman. 1996. AdipoQ is a novel adipose-specific gene dysregulated in obesity. Journal of Biological Chemistry 271: 10697–10703.

    Article  CAS  PubMed  Google Scholar 

  • Julien, E., M. Coulon-Bublex, A. Garel, C. Royer, G. Chavancy, J.C. Prudhomme, and P. Couble. 2005. Silk gland development and regulation of silk protein genes. In Comprehensive insect molecular science, ed. L. Gilbert, K. Iatrou, and S. Gill, 369–386. Oxford: Elsevier.

    Chapter  Google Scholar 

  • Kadowaki, T., T. Yamauchi, N. Kubota, K. Hara, K. Ueki, and K. Tobe. 2006. Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. Journal of Clinical Investigation 116: 1784–1792.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeda, K., K. Okubo, I. Shimomura, T. Funahashi, Y. Matsuzawa, and K. Matsubara. 1996. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (AdiPose Most abundant Gene transcript 1). Biochemical and Biophysical Research Communications 221: 286–289.

    Article  CAS  PubMed  Google Scholar 

  • Man, K., Y. Zhao, A. Xu, C.M. Lo, K.S. Lam, K.T. Ng, J.W. Ho, C.K. Sun, T.K. Lee, X.L. Li, and S.T. Fan. 2006. Fat-derived hormone adiponectin combined with FTY720 significantly improves small-for-size fatty liver graft survival. American Journal of Transplantation 6: 467–476.

    Article  CAS  PubMed  Google Scholar 

  • Mokdad, A.H., B.A. Bowman, E.S. Ford, F. Vinicor, J.S. Marks, and J.P. Koplan. 2001. The continuing epidemics of obesity and diabetes in the United States. JAMA 286: 1195–1200.

    Article  CAS  PubMed  Google Scholar 

  • Nakano, Y., T. Tobe, N.H. Choi-Miura, T. Mazda, and M. Tomita. 1996. Isolation and characterization of GBP28, a novel gelatin-binding protein purified from human plasma. Journal of Biochemistry 120: 803–812.

    Article  CAS  PubMed  Google Scholar 

  • Pischon, T., G.S. Hotamisligil, and E.B. Rimm. 2003. Adiponectin: stability in plasma over 36 h and within-person variation over 1 year. Clinical Chemistry 49: 650–652.

    Article  CAS  PubMed  Google Scholar 

  • Royer, C., A. Jalabert, M. Da Rocha, A.M. Grenier, B. Mauchamp, P. Couble, and G. Chavancy. 2005. Biosynthesis and cocoon-export of a recombinant globular protein in transgenic silkworms. Transgenic Research 14: 463–472.

    Article  CAS  PubMed  Google Scholar 

  • Scherer, P.E., S. Williams, M. Fogliano, G. Baldini, and H.F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. Journal of Biological Chemistry 270: 26746–26749.

    Article  CAS  PubMed  Google Scholar 

  • Shin, E., S. Shin, H. Kong, S. Lee, S.G. Do, T.H. Jo, Y.I. Park, C.K. Lee, I.K. Hwang, and K. Kim. 2011. Dietary aloe reduces adipogenesis via the activation of AMPK and suppresses obesity-related inflammation in obese mice. Immune Network 11: 107–113.

    Article  PubMed Central  PubMed  Google Scholar 

  • Shin, S., S. Kim, H.E. Oh, H. Kong, E. Shin, S.G. Do, T.H. Jo, Y.I. Park, C.K. Lee, and K. Kim. 2012. Dietary aloe QDM complex reduces obesity-induced insulin resistance and adipogenesis in obese mice fed a high-fat diet. Immune Network 12: 96–103.

    Article  PubMed Central  PubMed  Google Scholar 

  • Tamura, T., C. Thibert, C. Royer, T. Kanda, E. Abraham, M. Kamba, N. Komoto, J.L. Thomas, B. Mauchamp, G. Chavancy, P. Shirk, M. Fraser, J.C. Prudhomme, and P. Couble. 2000. Germline transformation of the silkworm Bombyx mori L. using a piggyBac transposon-derived vector. Nature Biotechnology 18: 81–84.

    Article  CAS  PubMed  Google Scholar 

  • Thomas, J.L., M. Da Rocha, A. Besse, B. Mauchamp, and G. Chavancy. 2002. 3xP3-EGFP marker facilitates screening for transgenic silkworm Bombyx mori L. from the embryonic stage onwards. Insect Biochemistry and Molecular Biology 32: 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, M., H. Munetsuna, T. Sato, T. Adachi, R. Hino, M. Hayashi, K. Shimizu, N. Nakamura, T. Tamura, and K. Yoshizato. 2003. Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nature Biotechnology 21: 52–56.

    Article  CAS  PubMed  Google Scholar 

  • Tomita, M., R. Hino, S. Ogawa, M. Iizuka, T. Adachi, K. Shimizu, H. Sotoshiro, and K. Yoshizato. 2007. A germline transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon. Transgenic Research 16: 449–465.

    Article  CAS  PubMed  Google Scholar 

  • Tullin, S., A. Sams, J. Brandt, K. Dahl, W. Gong, C.B. Jeppesen, T.N. Krogh, G.S. Olsen, Y. Liu, A.A. Pedersen, J.M. Petersen, B. Rolin, P.O. Wahlund, and C. Kalthoff. 2012. Recombinant adiponectin does not lower plasma glucose in animal models of type 2 diabetes. PLoS One 7: e44270.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xue, R., H. Chen, L. Cui, G. Cao, W. Zhou, X. Zheng, and C. Gong. 2012. Expression of hGM-CSF in silk glands of transgenic silkworms using gene targeting vector. Transgenic Research 21: 101–111.

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M.L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nature Medicine 7: 941–946.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, C., Y. Liao, Q. Li, M. Chen, Q. Zhao, R. Deng, C. Wu, A. Yang, Z. Guo, D. Wang, and X. He. 2013. Recombinant adiponectin ameliorates liver ischemia reperfusion injury via activating the AMPK/eNOS pathway. PLoS One 8: e66382.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This paper was supported by the Sahmyook University Research fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyungjae Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, S., Kim, BY., Jeon, HY. et al. Expression system for production of bioactive compounds, recombinant human adiponectin, in the silk glands of transgenic silkworms. Arch. Pharm. Res. 37, 645–651 (2014). https://doi.org/10.1007/s12272-013-0298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0298-9

Keywords

Navigation