Skip to main content
Log in

Aldose Reductase Inhibitory Compounds from Xanthium strumarium

  • Research Article
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

As part of our ongoing search for natural sources of therapeutic and preventive agents for diabetic complications, we evaluated the inhibitory effects of components of the fruit of Xanthium strumarium (X. strumarium) on aldose reductase (AR) and galactitol formation in rat lenses with high levels of glucose. To identify the bioactive components of X. strumarium, 7 caffeoylquinic acids and 3 phenolic compounds were isolated and their chemical structures were elucidated on the basis of spectroscopic evidence and comparison with published data. The abilities of 10 X. strumarium-derived components to counteract diabetic complications were investigated by means of inhibitory assays with rat lens AR (rAR) and recombinant human AR (rhAR). From the 10 isolated compounds, methyl-3,5-di-O-caffeoylquinate showed the most potent inhibition, with IC50 values of 0.30 and 0.67 μM for rAR and rhAR, respectively. In the kinetic analyses using Lineweaver–Burk plots of 1/velocity and 1/substrate, methyl-3,5-di-O-caffeoylquinate showed competitive inhibition of rhAR. Furthermore, methyl-3,5-di-O-caffeoylquinate inhibited galactitol formation in the rat lens and in erythrocytes incubated with a high concentration of glucose, indicating that this compound may be effective in preventing diabetic complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agata, I., S. Goto, T. Hatano, S. Nishibe, and T. Okuda. 1993. 1,3,5-Tri-O-Caffeoylquinic acid from Xanthium Strumarium. Phytochemistry 33: 508–509.

    Article  CAS  Google Scholar 

  • Brownlee, M. 2001. Biochemistry and molecular cell biology of diabetic complications. Nature 414: 813–820.

    Article  PubMed  CAS  Google Scholar 

  • Brownlee, M. 2005. The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54: 1615–1625.

    Article  PubMed  CAS  Google Scholar 

  • Carnat, A., A. Heitz, D. Fraisse, A.P. Carnat, and J.L. Lamaison. 2000. Major dicaffeoylquinic acids from Artemisia vulgaris. Fitoterapia 71: 587–589.

    Article  PubMed  CAS  Google Scholar 

  • Choi, S.Z., S.O. Lee, S.U. Choi, and K.R. Lee. 2003. A new sesquiterpene hydroperoxide from the aerial parts of Aster oharai. Archives of Pharmacal Research 26: 521–525.

    Article  PubMed  CAS  Google Scholar 

  • Cui, C.B., S.K. Jeong, Y.S. Lee, S.O. Lee, I.J. Kang, and S.S. Lim. 2009. Inhibitory Activity of Caffeoylquinic Acids from the Aerial Parts of Artemisia princeps on Rat Lens Aldose Reductase and on the Formation of Advanced Glycation End Products. Journal of the Korean Society for Applied Biological Chemistry 52: 655–662.

    Article  CAS  Google Scholar 

  • Dai, Y.H., Z. Cui, J.L. Li, and D. Wang. 2008. A new thiaziedione from the fruits of Xanthium sibiricum. Journal of Asian Natural Products Research 10: 343–347.

    PubMed  Google Scholar 

  • Danino, O., H.E. Gottlieb, S. Grossman, and M. Bergman. 2009. Antioxidant activity of 1,3-dicaffeoylquinic acid isolated from Inula viscose. Journal of Food Research 42: 1273–1280.

    Article  CAS  Google Scholar 

  • de la Fuente, J.A., and S. Manzanaro. 2003. Aldose reductase inhibitors from natural sources. Natural Products Reports 20: 243–251.

    Article  Google Scholar 

  • Engerman, R.L., and T.S. Kern. 1984. Experimental galactosemia produces diabetic-like retinopathy. Diabetes 33: 97–100.

    Article  PubMed  CAS  Google Scholar 

  • Han, T., H.L. Li, Q.Y. Zhang, P. Han, H.C. Zheng, K. Rahman, and L.P. Qin. 2007. Bioactivity-guided fractionation for anti-inflammatory and analgesic properties and constituents of Xanthium strumarium L. Phytomedicine 14: 825–829.

    Article  PubMed  CAS  Google Scholar 

  • Haraguchi, H., I. Ohmi, A. Fukuda, Y. Tamura, K. Mizutani, O. Tanaka, and W.H. Chou. 1997. Inhibition of aldose reductase and sorbitol accumulation by astilbin and taxifolin dihydroflavonols in Engelhardtia chrysolepis. Bioscience, Biotechnology, and Biochemistry 61: 651–654.

    Article  PubMed  CAS  Google Scholar 

  • Hayman, S., and J.H. Kinoshita. 1965. Isolation and Properties of Lens Aldose Reductase. Journal of Biological Chemistry 240: 877–882.

    PubMed  CAS  Google Scholar 

  • Hsu, F.L., Y.C. Chen, and J.T. Cheng. 2000. Caffeic acid as active principle from the fruit of Xanthium strumarium to lower plasma glucose in diabetic rats. Planta Medica 66: 228–230.

    Article  PubMed  CAS  Google Scholar 

  • Jacubert, M., O. Provot, J.F. Peyrat, A. Hamze, J.D. Brion, and M. Alami. 2010. p-Toluenesulfonic acid-promoted selective functionalization of unsymmetrical arylalkynes: a regioselective access to various arylketones and heterocycles. Tetrahedron 66: 3775–3787.

    Article  CAS  Google Scholar 

  • Jung, H.A., M.D. Islam, Y.S. Kwon, S.E. Jin, Y.K. Son, J.J. Park, H.S. Sohn, and J.S. Choi. 2011. Extraction and identification of three major aldose reductase inhibitors from Artemisia Montana. Food and Chemical Toxicology 49: 376–384.

    Article  PubMed  CAS  Google Scholar 

  • Kador, P.F., J.H. Kinoshita, W.H. Tung, and L.T. Chylack Jr. 1980. Differences in the susceptibility of various aldose reductases to inhibition. II. Investigative Ophthalmology & Visual Science 19: 980–982.

    CAS  Google Scholar 

  • Kador, P.F. 1988. The role of aldose reductase in the development of diabetic complications. Medicinal Research Reviews 8: 325–352.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J.H., M.Y. Choi, S.M. Kang, H.N. Kwon, H. Wen, C.H. Lee, M.S. Park, H.J. Wiklund Susanne Kim, S.W. Kwon, and S.H. Park. 2008. Application of a 1H Nuclear Magnetic Resonance (NMR) Metabolomics Approach Combined with Orthogonal Projections to Latent Structure-Discriminant Analysis as an Efficient Tool for Discriminating between Korean and Chinese Herbal Medicines. Journal of Agricultural and Food Chemistry 56: 11589–11595.

    Article  PubMed  CAS  Google Scholar 

  • Kawanishi, K., H. Ueda, and M. Moriyasu. 2003. Aldose reductase inhibitors from the nature. Current Medicinal Chemistry 10: 1353–1374.

    Article  PubMed  CAS  Google Scholar 

  • Kwang-Hyok, S., P. Ui-Nam, C. Sarkar, and R. Bhadra. 2005. A sensitive assay of red blood cell sorbitol level by high performance liquid chromatography: potential for diagnostic evaluation of diabetes. Clinica Chimica Acta 354: 41–47.

    Article  CAS  Google Scholar 

  • Lavault, M., A. Landreau, G. Larcher, J.P. Bouchara, F. Pagniez, P. Le Pape, and P. Richomme. 2005. Antileishmanial and antifungal activities of xanthanolides isolated from Xanthium macrocarpum. Fitoterapia 76: 363–366.

    Article  PubMed  CAS  Google Scholar 

  • Lee, E.H., D.G. Song, J.Y. Lee, C.H. Pan, B.H. Um, and S.H. Jung. 2008a. Inhibitory effect of the compounds isolated from Rhus verniciflua on aldose reductase and advanced glycation endproducts. Biological and Pharmaceutical Bulletin 31: 1626–2630.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.S., Y.H. Kang, J.Y. Jung, I.J. Kang, S.N. Han, J.S. Chung, H.K. Shin, and S.S. Lim. 2008b. Inhibitory constituents of aldose reductase in the fruiting body of Phellinus linteus. Biological and Pharmaceutical Bulletin 31: 765–768.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y.S., S.H. Kim, S.H. Jung, J.K. Kim, C.H. Pan, and S.S. Lim. 2010. Aldose reductase inhibitory compounds from Glycyrrhiza uralensis. Biological and Pharmaceutical Bulletin 33: 917–921.

    Article  PubMed  CAS  Google Scholar 

  • Ma, Y.T., M.C. Huang, F.L. Hsu, and H.F. Chang. 1998. Thiazinedione from Xanthium strumarium. Phytochemistry 48: 1083–1085.

    Article  CAS  Google Scholar 

  • Sang, S., K. Lapsley, R.T. Rosen, and C.T. Ho. 2002. New Prenylated Benzoic Acid and Other Constituents from Almond Hulls (Prunus amygdalus Batsch). Journal of Agricultural and Food Chemistry 50: 607–609.

    Article  PubMed  CAS  Google Scholar 

  • Yabe-Nishimura, C. 1998. Aldose reductase in glucose toxicity: a potential target for the prevention of diabetic complications. Pharmacological Reviews 50: 21–33.

    PubMed  CAS  Google Scholar 

  • Zhu, X., X. Dong, Y. Wang, P. Ju, and S. Luo. 2005. Phenolic compounds from Viburnum cylindricum. Helvetica Chimica Acta 88: 339–342.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (2012-008842 & 2012RJA6A1048184) and by Business for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Small and Medium Business Administration in 2011 (No. 47385).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon Sung Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoon, H.N., Lee, M.Y., Kim, JK. et al. Aldose Reductase Inhibitory Compounds from Xanthium strumarium . Arch. Pharm. Res. 36, 1090–1095 (2013). https://doi.org/10.1007/s12272-013-0123-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-013-0123-5

Keywords

Navigation