Skip to main content
Log in

Investigation of piperidine derivatives in ex vivo models of pain and platelet aggregation

  • Research Article
  • Drug Action
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

Piperidine derivatives are known to exhibit analgesic activities and are likely to possess the ability to block the effects of prostaglandins through inhibition of downstream signaling pathways. The present study investigated the activity of five derivatives (PD2-6) of 4-(4′-bromophenyl)-4-piperidinol (PD1), against pain and platelet aggregation mediated by the release of prostaglandins and thromboxane A2, respectively. The results showed that compound PD1 and its two phenacyl derivatives PD3 and PD5 exhibited a highly significant analgesic effect (p < 0.01), whereas PD4 and PD6 also showed significant activity. PD3, the most active analgesic compound when docked to the opioid receptor, had interactions between the oxygen of its nitro group and the amino group of ARG 573, indicating a distance of 1.2563 Å. The antiplatelet data showed that compound PD5 (4-(4′-bromo-phenyl)-4-hydroxy-1-[2-(2″,4″-dimethoxyphenyl)-2-oxo-ethyl]-piperidinium bromide) had an IC50 = 0.06 mM, which was the most active compound, whereas PD3 was the second most active compound against platelet aggregating factor-induced aggregation with an IC50 = 80 mM. Acetyl salicylic acid (IC50 = 150 μM) was used as a positive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Becker, D.P., Villamil, C. I., Barta, T. E., Bedell, L. J., Boehm, T. L., Decrescenzo, G. A., Freskos, J. N., Getman, D. P., Hockerman, S., Heintz, R., Howard, S. C., Li, M. H., McDonald, J. J., Carron, C. P., Funckes-Shippy, C. L., Mehta, P. P., Munie, G. E., and Swearingen, C. A., Synthesis and structure-activity relationships of beta- and alpha-piperidine sulfone hydroxamic acid matrix metalloproteinase inhibitors with oral antitumor efficacy. J. Med. Chem., 48, 6713–6730 (2005).

    Article  PubMed  CAS  Google Scholar 

  • DesJarlais, R.L., Sheridan, R. P., Seibel, G. L., Dixon, J. S., Kuntz, I. D., and Venkataraghavan, R., Docking: successes and challenges. J. Med. Chem., 31, 722–729 (1988).

    Article  PubMed  CAS  Google Scholar 

  • Di Stasi, L.C., Costa, M., Mendaçolli, S. L., Kirizawa, M., Gomes, C., and Trolin, G., Screening in mice of some medicinal plants used for analgesic purposes in the state of São Paulo. J. Ethnopharmacol., 24, 205–211 (1988).

    Article  PubMed  Google Scholar 

  • Erol, D.D. and Demirdamar, R., Analgesic and anti-inflammatory activity screening of 6-acyl-3-piperidinomethyl-2(3H)-benzoxazolone derivatives. Farmaco, 49, 663–666 (1994).

    PubMed  CAS  Google Scholar 

  • Feng, Z., Gollamudi, R., Dillingham, E. O., Bond, S. E., Lyman, B. A., Purcell, W. P., Hill, R. J., and Korfmacher, W. A., Molecular determinants of the platelet aggregation inhibitory activity of carbamoylpiperidines. J. Med. Chem., 35, 2952–2958 (1992).

    Article  PubMed  CAS  Google Scholar 

  • Guo, Z., Zheng, X., Thompson, W., Dugdale, M., and Gollamudi, R., New carbamoylpiperidines as human platelet aggregation inhibitors. Bioorg. Med. Chem., 8, 1041–1058 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Imamura, S., Nishikawa, Y., Ichikawa, T., Hattori, T., Matsushita, Y., Hashiguchi, S., Kanzaki, N., Iizawa, Y., Baba, M., and Sugihara, Y., CCR5 antagonists as anti-HIV-1 agents. Part 3. Synthesis and biological evaluation of piperidine-4-carboxamide derivatives. Bioorg. Med. Chem., 13, 397–416 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., and Taylor, R., Development and validation of a genetic algorithm for flexible. J. Mol. Biol., 267, 727–748 (1997).

    Article  PubMed  CAS  Google Scholar 

  • Kordik, C.P., Luo, C., Gutherman, M., Vaidya, A. H., Rosenthal, D. I., Crooke, J. J., McKenney, S. L., Plata-Salaman, C. R., and Reitz, A. B., Diarylacetylene piperidinyl amides as novel anxiolytics. Bioorg. Med. Chem. Lett., 16, 3065–3067 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Köksal, M. and Bilge, S. S., Synthesis and antidepressantlike profile of novel 1-aryl-3-[(4-benzyl) piperidine-1-yl] propane derivatives. Arch. Pharm. (Weinheim), 340, 299–303 (2007).

    Article  Google Scholar 

  • Lawrence, W.P., Howell, R. D., and Gollamudi, R., Antiplatelet activity of nipecotamides in experimental thrombosis in mice. J. Pharm. Sci., 83, 222–225 (1994).

    Article  PubMed  CAS  Google Scholar 

  • Miguel, O.G., Santos, A. R., Calixto, J. B., Delle Monache, F., and Yunes, R. A., Antinociceptive activity of the natural piperidine alkaloid hydrochlorides from Syphocampylus verticellatus. Z. Naturforsch. C, 57, 81–84 (2002).

    PubMed  CAS  Google Scholar 

  • Montrucchio, G., Alloattig, G., and Camussi, G., Role of platelet-activating factor in cardiovascular pathophysiology. Physiol. Rev., 1669-1699 (2000).

  • Mushtaq, N., Saify, Z. S., Akhtar, S., Arif, M., Haider, S., and Saba, N., Synthesis of some novel analogues of 4-(1-pyrrolidinyl) Perpridine and their effects on plasma glucose level. Pak. J. Phar. Sci., 23, 220–223 (2010).

    CAS  Google Scholar 

  • Ramachandran, R., Rani, M., Senthan, S., Jeong, Y. T., and Kabilan, S., Biological activity of piperidine derivatives. Eur. J. Med. Chem., 46, 1926–1934 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Rasheed, H., Tirmizi, A. H., Salahuddin, F., Rizvi, N. B., Arshad, F., Farooq, S. Z., and Saeed, S. A., Calcium signaling in human platelet aggregation mediated by platelet activating factor and calcium ionophore, A23187. J. Biol. Sci., 4, 117–121 (2004a).

    Article  Google Scholar 

  • Rasheed, H. and Saeed, S. A., Involvement of thromboxane A2 and tyrosine kinase in the synergistic interaction of platelet activating factor and calcium ionophore A23187 in human platelet aggregation. Exp. Mol. Med., 36, 220–225 (2004b).

    PubMed  CAS  Google Scholar 

  • Saeed, M., Saify, Z. S., Gilani, A. H., Haider, M. S., and Iqbal, Z., Studies on the effects of piperidine derivatives on blood pressure and smooth muscles contractions. Arch. Pharm. Res., 21, 370–373 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Saify, Z.S., Nisa, M., Azhr, K. F., Azim, M. K., Rasheed, H., Mushtaq, N., Arain, M. A., Haider, S., Khanum, M., and Ahmed, W., Characterization of plasmodium falciparum aspartic protease inhibition by piperidine derivatives. Nat. Prod. Res., 25, 1965–1968 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Thaler, F., Varasi, M., Carenzi, G., Colombo, A., Abate, A., Bigogno, C., Boggio, R., Carrara, S., Cataudella, R. D. F., Reali, V., Vultaggio, S., Dondio, G., Gagliardi, S., and Mercurio, C., Spiro [chromane-2,4′-piperidine]-based histone deacetylase inhibitors with improved in vivo activity. Chem. Med. Chem., 7, 709–21 (2012).

    PubMed  CAS  Google Scholar 

  • Zheng, X., Salgia, S. R., Thompson, W. B., Dillingham, E. O., Bond, S. E., Feng, Z., Prasad, K. R., and Gollamudi, R., Design and synthesis of piperidine-3-carboxamides as human platelet aggregation inhibitors. J. Med. Chem., 38, 180–188 (1995).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zafar Saeed Saify.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saify, Z.S., Rasheed, H., Mushtaq, N. et al. Investigation of piperidine derivatives in ex vivo models of pain and platelet aggregation. Arch. Pharm. Res. 35, 1953–1959 (2012). https://doi.org/10.1007/s12272-012-1112-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-1112-9

Key words

Navigation