Skip to main content
Log in

Lipid emulsion as a drug delivery system for breviscapine: Formulation development and optimization

  • Research Articles
  • Drug Development
  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

In this study, we developed an optimized formulation of a breviscapine lipid emulsion (BLE) and evaluated the physicochemical properties and in vivo pharmacokinetics of BLE in rats. For the preparation of the lipid emulsion, soybean oil and oleic acid were used as the oil phase, lecithin and poloxamer 188 as surfactants and glycerol as co-surfactant. An optimized formulation consisting of soybean oil (10.0%), oleic acid (0.9%), lecithin (1.5%), poloxamer 188 (0.4%), and glycerol (2.25%) was selected. The results showed that the average particle size, polydispersity index, and zeta potential of the optimized formulation were 183.5 ± 5.5 nm, 0.098 ± 0.046, and −35.0 ± 2.5 mV, respectively. The BLE was stable for at least three month at room temperature. After a single intravenous dose of 4 mg/kg to rats, the AUC of scutellarin from the lipid emulsion was about 1.5-fold higher than that of the commercial product (breviscapine injection). In conclusion, the optimized formulation of BLE showed positive results over the commercial product in terms of the physicochemical properties and pharmacokinetics of BLE in rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bunjes, H., Lipid nanoparticles for the delivery of poorly water-soluble drugs. J. Pharm. Pharmacol., 62, 1637–1645 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Cui, W., Li, X., Zhou, S., and Weng, J., Investigation on process parameters of electrospinning system through orthogonal experimental design. J. Appl. Polym. Sci., 103, 3105–3112 (2007).

    Article  CAS  Google Scholar 

  • Das, S. and Chaudhury, A., Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech, 12, 62–76 (2011).

    Article  PubMed  CAS  Google Scholar 

  • Fan, X., Liu, Q., Zhen, P., Zhang, Y., and Hu, X., Stepwise multiple regressions application in liposome orthogonal experiments. J. Chin. Pharmaceut. Sci., 16, 96–100 (2007).

    CAS  Google Scholar 

  • Hao, X., Cheng, G., Sun, J., Zou, M., Yu, J., Zhang, S., and Cui, F., Validation of an HPLC method for the determination of scutellarin in rat plasma and its pharmacokinetics. J. Pharm. Biomed. Anal., 38, 360–363 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Hong, M. S., Lim, S. J., Lee, M. K., Kim, Y. B., and Kim, C. K., Prolonged blood circulation of methotrexate by modulation of liposomal composition. Drug Deliv., 8, 231–237 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Hu, X. M., Zhou, M. M., Hu, X. M., and Zeng, F. D., Neuroprotective effects of scutellarin on rat neuronal damage induced by cerebral ischemia/reperfusion. Acta Pharmacol. Sin., 26, 1454–1459 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Ji, C., Na, W., Fei, X., Sheng-Jun, C., and Jia-Bi, Z., Characterization, lung targeting profile and therapeutic efficiency of dipyridamole liposomes. J. Drug Target., 14, 717–724 (2006).

    Article  PubMed  Google Scholar 

  • Kurihara, A., Shibayama, Y., Mizota, A., Yasuno, A., Ikeda, M., Sasagawa, K., Kobayashi, T., and Hisaoka, M., Lipid emulsion of palmitoylrhizoxin: effects of composition on lipolysis and biodistribution. Biopharm. Drug Dispos., 17, 331–342 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Liu, H., Yang, X.-L., Wang, Y., Tang, X.-Q., Jiang, D.-Y., and Xu, H.-B., Protective effects of scutellarin on superoxideinduced oxidative stress in rat cortical synaptosomes. Acta Pharmacol. Sin., 24, 1113–1117 (2003).

    PubMed  CAS  Google Scholar 

  • Lu, J., Cheng, C., Zhao, X., Liu, Q., Yang, P., Wang, Y., and Luo, G., PEG-scutellarin prodrugs: Synthesis, water solubility and protective effect on cerebral ischemia/reperfusion injury. Eur. J. M ed. Chem., 45, 1731–1738 (2010).

    Article  CAS  Google Scholar 

  • Mulik, R., Mahadik, K., and Paradkar, A., Development of curcuminoids poly(butyl) cyanoacrylate nanoparticles: Physicochemical characterization and stability study. Eur. J. Pharm. Sci., 37, 395–404 (2009).

    Article  PubMed  CAS  Google Scholar 

  • Müller, R. H., Mäder, K., and Gohla, S., Solid lipid nanoparticles (SLN) for controlled drug delivery — a review of the state of the art. Eur. J. Pharm. Biopharm., 50, 161–177 (2000).

    Article  PubMed  Google Scholar 

  • Onuki, Y., Morishita, M., and Takayama, K., Formulation optimization of water-in-oil-water multiple emulsion for intestinal insulin delivery. J. Control. Release, 97, 91–99 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Porter, C. J. H., Trevaskis, N. L., and Charman, W. N., Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs. Nat. Rev. Drug Discov., 6, 231–248 (2007).

    Article  PubMed  CAS  Google Scholar 

  • Reddy, L. H. and Murthy, R. S. R., Influence of polymerization technique and experimental variables on the particle properties and release kinetics of methotrexate from poly (butylcyanoacrylate) nanoparticles. Acta Pharm., 54, 103–118 (2004).

    PubMed  CAS  Google Scholar 

  • Shi, S., Xu, L., Mao, Z., Li, W., Ye, J., and Gao, M., Study on physicochemical properties and influence factors on stability of breviscapine. China Journal of Chinese Materia Medica, 34, 843–847 (2009).

    PubMed  CAS  Google Scholar 

  • Society of Toxicology (SOT), Guiding principles in the use of animals in toxicology. www.toxicology.org/AI/FA/guidingprinciples.pdf (2008).

  • Souto, E. B. and Muller, R. H., Lipid nanoparticles: effect on bioavailability and pharmacokinetic changes. Handb. Exb. Pharmacol., 197, 115–141 (2010).

    Article  CAS  Google Scholar 

  • Tang, J., Wei, H., Liu, H., Ji, H., Dong, D., Zhu, D., and Wu, L., Pharmacokinetics and biodistribution of itraconazole in rats and mice following intravenous administration in a novel liposome formulation. Drug Deliv., 7, 223–230 (2010).

    Article  Google Scholar 

  • Wang, M., Xie, C., Cai, R. L., Li, X. H., Luo, X. Z., and Qi, Y., Studies on antioxidant activities of breviscapine in the cell-free system. Am. J. Chin. Med., 36, 1199–1207 (2008).

    Article  PubMed  CAS  Google Scholar 

  • Wang, M. Y., Sato, H., Adachi, I., and Horikoshi, I., Optimization of the formulation design of chitosan microspheres containing cisplatin. J. Pharm. Sci., 85, 1204–1210 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Wenli, L., Jianxin, G., Jin, L., Luosheng, H., and Qineng, P., Distribution of liposomal breviscapine in brain following intravenous injection in rats. Int. J. Pharm., 306, 99–106 (2005).

    Article  Google Scholar 

  • Wenli, L., Jianxin, G., Qineng, P., Yunmei, S., and Jin, L., Comparative pharmacokinetics of breviscapine liposomes in dogs, rabbits and rats. Int. J. Pharm., 359, 118–122 (2008).

    Article  Google Scholar 

  • Xiong, F., Xiong, C., Ge, L., Chen, Y.-J., Wang, H., Gu, N., and Zhu, J.-B., Preparation, characterization, and biodistribution of breviscapine proliposomes in heart. J. Drug Target., 17, 408–414 (2009).

    Article  Google Scholar 

  • Xiong, F., Wang, H., Geng, K.-K., Gu, N., and Zhu, J.-B., Optimized preparation, characterization and biodistribution in heart of breviscapine lipid emulsion. Chem. Pharm. Bull., 58, 1455–1460 (2010).

    Article  PubMed  CAS  Google Scholar 

  • Xiong, F., Wang, H., Chen, Y.-J., Geng, K.-K., Gu, N., and Zhu, J.-B., Characterization, biodistribution and targeting evaluation of breviscapine lipid emulsions following intravenous injection in mice. Drug Deliv., 18, 159–165 (2011a).

    Article  PubMed  CAS  Google Scholar 

  • Xiong, F., Xiong, C., Yao, J., Chen, X., and Gu, N., Preparation, characterization and evaluation of breviscapine lipid emulsions coated with monooleate-PEG-COOH. Int. J. Pharm., 421, 275–282 (2011b).

    Article  PubMed  CAS  Google Scholar 

  • Yiming, L., Wei, H., Aihua, L., and Fandian, Z., Neuroprotective effects of breviscapine against apoptosis induced by transient focal cerebral ischaemia in rats. J. Pharm. Pharmacol., 60, 349–355 (2008).

    Article  PubMed  Google Scholar 

  • Zhang, J., Li, X. S., and Zhang, W. D., Progress in study of chemical constituents and pharmacological activity of breviscarpus. J. Pharm. Pract., 20, 103–107 (2002).

    Google Scholar 

  • Zhou, Q. S., Zhao, Y. M., Bai, X., Li, P. X., and Ruan, C. G., Effect of new-breviscapine on fibrinolysis and anticoagulation of human vascular endothelial cells. Acta Pharmacol. Sin., 13, 239–242 (1992).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jong Oh Kim or Qizhe Quan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wei, L., Li, G., Yan, YD. et al. Lipid emulsion as a drug delivery system for breviscapine: Formulation development and optimization. Arch. Pharm. Res. 35, 1037–1043 (2012). https://doi.org/10.1007/s12272-012-0611-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-012-0611-z

Key words

Navigation