Skip to main content
Log in

Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles

  • Published:
Archives of Pharmacal Research Aims and scope Submit manuscript

Abstract

The objective of this study is to investigate the pharmacokinetics and biodistribution of free breviscapine (BVP) and coated BVP-loaded poly (D, L-lactic acid) nanoparticles (BVP-PLA-NPs) in rats after i.v. administration. Coated BVP-PLA-NPs were prepared by the spontaneous emulsification solvent diffusion method and characterized. The BVP content in the NPs, the biological samples and in vitro release was measured by the high-performance liquid chromatography (HPLC). The mean sizes of coated BVP-PLA-NPs were 177 and 319 nm with a narrow distribution and smooth sphere shapes, entrapment efficiency of 86.9% and 93.1%, respectively. Drug release profiles in phosphate buffer and plasma exhibited a biphasic release phenomenon. After i.v. administration of free BVP and NPs suspensions in rats, area under plasma concentration-time curve and elimination t 1/2 were increased 9.3-fold and 10.9-fold for 177 nm of NPs, and 4.4-fold and 17.1-fold for 319 nm of NPs compared with that of free BVP, respectively. NPs were mainly distributed in liver, spleen, heart and brain. In addition, NPs could penetrate blood brain barrier (BBB) and the particle size had some effect on pharmacokinetics and biodistribution. Coated BVP-PLA-NPs could effectively avoid the capture by the reticuloendothelial system and prolong the half-life of BVP. Moreover, these NPs could penetrate BBB and enhance the accumulation of BVP in brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alvarez-Roman, R., Naik, A., Kalia, Y. N., Guy, R. H., and Fessi, H., Enhancement of topical delivery from biodegradable nanoparticles. Pharm. Res., 21, 1818–1825 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Cui, J. M. and Wu, S., The advance on the research of breviscapine (in chinese). Natural Product Res. Develop., 15, 225–229 (2003).

    Google Scholar 

  • Dunn, S. E., Coombes, A. G. A., Garnett, M. C., Davis, S. S., Davies, M. C., and Illum, L., In vitro cell interaction and in vivo biodistribution of poly(lactide-co-glycolide) nanospheres surface modified by poloxamer and poloxamine copolymers. J. Control. Release, 44, 65–76 (1997).

    Article  CAS  Google Scholar 

  • Elizabeth, C. and Samir, M., Prolonged circulation of large polymeric nanoparticles by non-covalent adsorption on erythrocytes. J. Control. Release, 100, 111–119 (2004).

    Article  CAS  Google Scholar 

  • Ge, Q. H., Zou, Z., Zhi, X. J., Ma, L. L., and Chen, X. H., Pharmacokinetics and absolute bioavailability of breviscapine in beagle dogs (in chinese). Chin. J. Pharm., 34, 618–620 (2003).

    CAS  Google Scholar 

  • Giannavola, C., Bucolo, C., Maltese, A., Paolino, D., Vandelli, M. A., Puglisi, G., Lee, V. H. L., and Fresta, M., Influence of preparation conditions on acyclovir-loaded poly-d,l-lactic acid nanopheres and effect of PEG coating on ocular drug bioavailability. Pharm. Res., 20, 584–590 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Gulyaev, A., Gelperina, S. E., Skidan, I. N., Antropov, A. S., Kivman, G. Y., and Kreuter, J., Significant transport of doxorubicin into the brain with polysorbate 80 coated nanoparticles. Pharm. Res., 16, 1564–1569 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Gupta, A. K., Madan, S., Majumdar, D. K., and Maitra, A., Ketorolac entrapped in polymeric micelles: preparation, characterization and ocular anti-inflammatory studies. Int. J. Pharm., 209, 1–14 (2000).

    Article  PubMed  CAS  Google Scholar 

  • Hitzman, C. J., Elmquist, W. F., Wattenberg, L. W., and Wiedmann, T. S., Development of a respirable, sustained release microcarrier for 5-fluorouracil I: in vitro assessment of liposomes, microspheres, and lipid coated nanoparticles. J. Pharm. Sci., 95, 1114–1126 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Holland, S. J. and Tighe, B. J., Biodegradable polymers. In: Garderton, D. and Jones, T. (Eds.), Advances in pharmaceutical science, vol. 6. New York, Academic Press. pp. 101–164 (1992).

    Google Scholar 

  • Illum, L. and Davis, S. S., Effect of the non-ionic surfactant poloxamer 338 on the fate and deposition of polystyrene microspheres following intravenous administration. J. Pharm. Sci., 72, 1086–1089 (1983).

    Article  PubMed  CAS  Google Scholar 

  • Juliano, R. L., Factors affecting the clearance kinetics and tissue distribution of liposomes, microspheres and emulsions. Adv. Drug Deliv. Rev., 2, 31–54 (1988).

    Article  CAS  Google Scholar 

  • Kreuter, J., Nanoparticulate systems for brain delivery of drug. Adv. Drug Deliv. Rev., 47, 65–81 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Kreuter, J., Alyautdin, R. N., Kharkevich, D. A., and Ivanov, A. A., Passage of peptides through the blood-brain barrier with colloidal polymeric particles (nanoparticles). Brain Res., 674, 171–174 (1995).

    Article  PubMed  CAS  Google Scholar 

  • Levy, M. Y. and Benita, S., Drug release from submicronized o/w emulsion: a new in vitro kinetic evaluation model. Int. J. Pharm., 66, 29–37 (1990).

    Article  CAS  Google Scholar 

  • Liu, C., Liu, H. G., Yu, X. L., and Guo, H. C., Advances in studies on Erigeron breviscapus (in chinene). Chinese Wild Plant Resources, 22, 8–11 (2003a).

    CAS  Google Scholar 

  • Liu, M. X., Dong, J., Yang, Y. L., Yang, X. L., and Xu, H. B., Research on system of triptolide-loaded poly (D, L-lactic acid) nanoparticles (in chinese). J. Chinese Pharm. Univ., 35, 117–121 (2004).

    Google Scholar 

  • Liu, M. X., Dong, J., Yang, Y. L., Yang, X. L., and Xu, H. B., Anti-inflammatory effects of triptolide loaded poly (d,l-lactic acid) nanoparticles on adjuvant-induced arthritis in rats. J. Ethnopharmacol., 97, 219–225 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Liu, Y. M., Lin, A. H., Chen, H., and Zeng, F. D., Study on pharmacokinetics of scutellarin in rabbits (in chinese). Acta Pharm. Sinica, 38, 775–778 (2003b).

    CAS  Google Scholar 

  • Lu, Q., Qu, L. J., Yu, H., Luo, C. M., Han, C. L., and Liu, A. M., Advances in studies on Erigeron breviscapus (in chinese). Chinese Traditional and Herbal Drug, 36, 141–144 (2005).

    Google Scholar 

  • Ma, K., Li, Y. L., and Zhang, Y. P., The clinical application of breviscapine (in chinese). Herald of Medicine, 22, 79–80 (2003).

    Google Scholar 

  • Magenheim, B., Levy, M. Y., and Benita, S., A new in vitro technique for the evaluation of drug release profile from colloidal carriers-ultrafiltration technique at low pressure. Int. J. Pharm., 94, 115–123 (1993).

    Article  CAS  Google Scholar 

  • Manjunath, K. and Venkateswarlu, V., Pharmacokinetics, tissue distribution and bioavailability of clozapine solid lipid nanoparticles after intravenous and intraduodenal administration. J. Control. Release, 107, 215–228 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Moghimi, S. M., Pavey K. D., and Hunter A. C., Real-time evidence of surface modification at polystyrene lattices by poloxamine 908 in the presence of serum: in vivo conversion of macrophage-prone nanoparticles to stealth entities by poloxamine 908. FEBS Lett., 547, 177–182 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Muller, R. H. and Goppert, T. M., Protein adsorption patterns on poloxamer-and poloxamine-stabilized solid lipid nanoparticles (SLN). Eur. J. Pharm. Biopharm., 60, 361–372 (2005).

    Article  PubMed  CAS  Google Scholar 

  • Owens, D. E. and Peppas, N. A., Opsonization, biodistration and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm., 307, 93–102 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Redhead, H. M., Davis, S. S., and Illum, L., Drug delivery in poly (lactide-co-glycolide) nanoparticles surface modified with poloxamer 407 and poloxamine 908: in vitro characterization and in vivo evaluation. J. Control. Release, 70, 353–363 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Schroeder, U., Sommerfeld, P., Ulrich, S., and Sabel, B. A., Nanoparticle technology for delivery of drugs across the blood-brain barrier. J. Pharm. Sci., 87, 1305–1307 (1998).

    Article  PubMed  CAS  Google Scholar 

  • Soppimath, K. S., Aminabhavi, T. M., Kulkarni, A. R., and Rudzinski, W. E., Biodegradable polymeric nanoparticles as drug delivery devices. J. Control. Release, 70, 1–20 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Vega, E., Egea, M. A., Valls, O., Espina, M., and Garcia, M. L., Flurbiprofen loaded biodegradable nanoparticles for ophtalmic administration. J. Pharm. Sci., 95, 2393–2405 (2006).

    Article  PubMed  CAS  Google Scholar 

  • Win, K. Y. and Feng, S. S., Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials, 26, 2713–2722 (2005).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingxing Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, M., Li, H., Luo, G. et al. Pharmacokinetics and biodistribution of surface modification polymeric nanoparticles. Arch. Pharm. Res. 31, 547–554 (2008). https://doi.org/10.1007/s12272-001-1191-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12272-001-1191-8

Key words

Navigation