Skip to main content
Log in

Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload

  • Original Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Engineered cardiac microtissues were fabricated using pluripotent stem cells with a hypertrophic cardiomyopathy associated c. 2827 C>T; p.R943x truncation variant in myosin binding protein C (MYBPC3+/−). Microtissues were mounted on iron-incorporated cantilevers, allowing manipulations of cantilever stiffness using magnets, enabling examination of how in vitro afterload affects contractility. MYPBC3+/− microtissues developed augmented force, work, and power when cultured with increased in vitro afterload when compared with isogenic controls in which the MYBPC3 mutation had been corrected (MYPBC3+/+(ed)), but weaker contractility when cultured with lower in vitro afterload. After initial tissue maturation, MYPBC3+/− CMTs exhibited increased force, work, and power in response to both acute and sustained increases of in vitro afterload. Together, these studies demonstrate that extrinsic biomechanical challenges potentiate genetically-driven intrinsic increases in contractility that may contribute to clinical disease progression in patients with HCM due to hypercontractile MYBPC3 variants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Abbreviations

CMT:

Cardiac microtissues

HCM:

Hypertrophic cardiomyopathy

Hu-iPSC-FBs:

Human-induced pluripotent stem cell fibroblasts

Hu-iPSC-CMs:

Human-induced pluripotent stem cell cardiomyocytes

iPSC:

Induced pluripotent stem cells

MRE:

Magnetorheological elastomer

MYPBC3:

Myosin binding protein C

PDMS:

Polydimethylsiloxane

References

  1. Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the CARDIA study. Circulation. 1995;92(4):785–9. https://doi.org/10.1161/01.CIR.92.4.785.

    Article  CAS  PubMed  Google Scholar 

  2. Burke MA, Cook SA, Seidman JG, Seidman CE. Clinical and mechanistic insights into the genetics of cardiomyopathy. J Am Coll Cardiol. 2016;68(25):2871–86. https://doi.org/10.1016/j.jacc.2016.08.079.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Toepfer CN, Wakimoto H, Garfinkel AC, et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci Trans Med. 2019;11(476):eaat1199. https://doi.org/10.1126/scitranslmed.aat1199.

  4. Davis J, Davis LC, Correll RN, et al. A tension-based model distinguishes hypertrophic versus dilated cardiomyopathy. Cell. 2016;165(5):1147–59. https://doi.org/10.1016/j.cell.2016.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Green EM, Wakimoto H, Anderson RL, et al. Heart disease: a small-molecule inhibitor of sarcomere contractility suppresses hypertrophic cardiomyopathy in mice. Science. 2016;351(6273):617–21. https://doi.org/10.1126/science.aad3456.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Maron MS, Rowin EJ, Olivotto I, et al. Contemporary natural history and management of nonobstructive hypertrophic cardiomyopathy. J Am Coll Cardiol. 2016;67(12):1399–409. https://doi.org/10.1016/j.jacc.2016.01.023.

    Article  PubMed  Google Scholar 

  7. Maron BJ. Hypertrophic Cardiomyopathy. The Lancet. 1997;350:127–33. https://doi.org/10.1016/j.cnur.2013.09.001.

    Article  CAS  Google Scholar 

  8. Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: genetics, pathogenesis, clinical manifestations, diagnosis, and therapy. Circ Res. 2017;121(7):749–70. https://doi.org/10.1161/CIRCRESAHA.117.311059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Repetti GG, Kim Y, Pereira AC, et al. Discordant clinical features of identical hypertrophic cardiomyopathy twins. Proc Natl Acad Sci U S A. 2021;118(10):3–7. https://doi.org/10.1073/pnas.2021717118.

    Article  CAS  Google Scholar 

  10. Leonard A, Bertero A, Powers JD, et al. Afterload promotes maturation of human induced pluripotent stem cell derived cardiomyocytes in engineered heart tissues. J Mol Cell Cardiol. 2018;118(March):147–58. https://doi.org/10.1016/j.yjmcc.2018.03.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Truitt R, Mu A, Corbin EA, et al. Increased afterload augments sunitinib-induced cardiotoxicity in an engineered cardiac microtissue model. JACC Basic Transl Sci. 2018;3(2):265–76. https://doi.org/10.1016/j.jacbts.2017.12.007.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hirt MN, Sörensen NA, Bartholdt LM, et al. Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Res Cardiol. 2012;107(6):307. https://doi.org/10.1007/s00395-012-0307-z.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rodriguez ML, Werner TR, Becker B, Eschenhagen T, Hirt MN. A magnetics-based approach for fine-tuning afterload in engineered heart tissues. ACS Biomater Sci Eng. 2019;5(7):3663–75. https://doi.org/10.1021/acsbiomaterials.8b01568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tang SY, Zhang X, Sun S, et al. Versatile microfluidic platforms enabled by novel magnetorheological elastomer microactuators. Adv Funct Mater. 2018;28(8):1705484. https://doi.org/10.1002/adfm.201705484.

    Article  CAS  Google Scholar 

  15. Li Y, Li J, Li W, Du H. A state-of-the-art review on magnetorheological elastomer devices. Smart Mater Struct. 2014;23(12):123001. https://doi.org/10.1088/0964-1726/23/12/123001.

    Article  Google Scholar 

  16. Corbin E, Vite A, Peyster EG, et al. Tunable and reversible substrate stiffness reveals dynamic mechanosensitivity of cardiomyocytes. ACS Appl Mater Interfaces. 2019;11(23):20603–14. https://doi.org/10.1021/acsami.9b02446.

    Article  CAS  PubMed  Google Scholar 

  17. Seeger T, Shrestha R, Lam CK, et al. A premature termination codon mutation in MYBPC3 causes hypertrophic cardiomyopathy via chronic activation of nonsense-mediated decay. Circulation. 2019;139(6):799–811. https://doi.org/10.1161/CIRCULATIONAHA.118.034624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen CY, Caporizzo MA, Bedi K, et al. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat Med. 2018;24(8):1225–33. https://doi.org/10.1038/s41591-018-0046-2.

    Article  CAS  PubMed  Google Scholar 

  19. Legant WR, Pathak A, Yang MT, Deshpande VS, McMeeking RM, Chen CS. Microfabricated tissue gauges to measure and manipulate forces from 3D microtissues. Proc Natl Acad Sci. 2009;106(25):10097–102. https://doi.org/10.1016/0002-9394(83)90280-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boudou T, Legant WR, Mu A, et al. A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A. 2012;18(9–10):910–9. https://doi.org/10.1089/ten.tea.2011.0341.

    Article  CAS  PubMed  Google Scholar 

  21. Krick BA, Vail JR, Persson BNJ, Sawyer WG. Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol Lett. 2012;45(1):185–94. https://doi.org/10.1007/s11249-011-9870-y.

    Article  Google Scholar 

  22. Vite A, Caporizzo MA, Corbin EA, et al. Extracellular stiffness induces contractile dysfunction in adult cardiomyocytes via cell-autonomous and microtubule-dependent mechanisms. Basic Res Cardiol. 2022;117(1):41. https://doi.org/10.1007/s00395-022-00952-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Viswanathan SK, Sanders HK, McNamara JW, et al. Hypertrophic cardiomyopathy clinical phenotype is independent of gene mutation and mutation dosage. PLoS ONE. 2017;12(11):1–19. https://doi.org/10.1371/journal.pone.0187948.

    Article  CAS  Google Scholar 

  24. Stöhr A, Friedrich FW, Flenner F, et al. Contractile abnormalities and altered drug response in engineered heart tissue from Mybpc3-targeted knock-in mice. J Mol Cell Cardiol. 2013;63:189–98. https://doi.org/10.1016/j.yjmcc.2013.07.011.

    Article  CAS  PubMed  Google Scholar 

  25. Harris SP, Bartley CR, Hacker TA, et al. Hypertrophic cardiomyopathy in cardiac myosin binding protein-C knockout mice. Circ Res. 2002;90(5):594–601. https://doi.org/10.1161/01.RES.0000012222.70819.64.

    Article  CAS  PubMed  Google Scholar 

  26. Van Dijk SJ, Boontje NM, Heymans MW, et al. Preserved cross-bridge kinetics in human hypertrophic cardiomyopathy patients with MYBPC3 mutations. Pflugers Arch. 2014;466(8):1619–33. https://doi.org/10.1007/s00424-013-1391-0.

    Article  CAS  PubMed  Google Scholar 

  27. Birket MJ, Ribeiro MC, Kosmidis G, et al. Contractile defect caused by mutation in MYBPC3 revealed under conditions optimized for human PSC-cardiomyocyte function. Cell Rep. 2015;13(4):733–45. https://doi.org/10.1016/j.celrep.2015.09.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ma Z, Huebsch N, Koo S, et al. Contractile deficits in engineered cardiac microtissues as a result of MYBPC3 deficiency and mechanical overload. Nat Biomed Eng. 2018;2(12):955–67. https://doi.org/10.1038/s41551-018-0280-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Judge D, Neamatalla H, Norris R, et al. Targeted mybpc3 knock-out mice with cardiac hypertrophy exhibit structural mitral valve abnormalities. J Cardiovasc Dev Dis. 2015;2(2):48–65. https://doi.org/10.3390/jcdd2020048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Toepfer CN, Sharma A, Cicconet M, et al. SarcTrack. Circ Res. 2019;124(8):1172–83. https://doi.org/10.1161/CIRCRESAHA.118.314505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Luo Q, Chen J, Zhang T, Tang X, Yu B. Retrospective analysis of clinical phenotype and prognosis of hypertrophic cardiomyopathy complicated with hypertension. Sci Rep. 2020;10(1):1–9. https://doi.org/10.1038/s41598-019-57230-z.

    Article  CAS  Google Scholar 

  32. Zhang N, Stauffer F, Simona BR, et al. Multifunctional 3D electrode platform for real-time in situ monitoring and stimulation of cardiac tissues. Biosens Bioelectron. 2018;112(April):149–55. https://doi.org/10.1016/j.bios.2018.04.037.

    Article  CAS  PubMed  Google Scholar 

  33. Cohn R, Thakar K, Lowe A, et al. A contraction stress model of hypertrophic cardiomyopathy due to sarcomere mutations. Stem Cell Rep. 2019;12(1):71–83. https://doi.org/10.1016/j.stemcr.2018.11.015.

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by a grant from the State of Pennsylvania Department of Health, with additional support from NIH/NCATS award number TL1TR001880 to A.R. and C.E.L.; the Sidney Pestka M’61 Term Fellowship to A.R.; support from NIH T32-HL007843 to B.W.L.; American Heart Association 19CDA34770040 to C.K.L.; NIH/NHLBI grant R01 HL126527 and R01 HL130020 to J.C.W.; the Center for Engineering Mechanobiology (CEMB) under grant agreement CMMI: 15-48571 and a Provost Postdoctoral Fellowship to A.I.B.; and NIH/NHLBI grant R01-HL149891, the Leducq Foundation TNE ID#673168 and the Gordon and Llura Gund Family Fund to K.B.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth B. Margulies.

Ethics declarations

Human Subjects/Informed Consent/Animal Subjects Statement

While no human studies were carried out by the authors for this article, we utilized two cell lines of Hu-iPSC-CMs from the Stanford Cardiovascular Institute that were employed in the previous studies [17]. As described in Seeger et al., the protocol for induced pluripotent stem cell generation and cardiomyocyte differentiation were in accordance with the ethical standards of and approved by the Stanford Institutional Review Board (IRB) and Stem Cell Research Oversight (SCRO) Committee, and with the Helsinki Declaration of 1975, as revised in 2000. iPSC lines were obtained from patients with informed consent [17]. All procedures are followed of the responsible committee on human experimentation (institutional and national). Informed consent was obtained from all patients included in the study. No animal studies were carried out.

Competing Interests

Dr. Kenneth Margulies receives consulting fees for serving on the advisory board for Bristol-Myers-Squibb (myosin inhibitors).

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2384 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, A., Livingston, C.E., Vite, A. et al. Biomechanical Impact of Pathogenic MYBPC3 Truncation Variant Revealed by Dynamically Tuning In Vitro Afterload. J. of Cardiovasc. Trans. Res. 16, 828–841 (2023). https://doi.org/10.1007/s12265-022-10348-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-022-10348-4

Keywords

Navigation