Skip to main content

Advertisement

Log in

Mesenchymal Stem Cell Exosomes in the Treatment of Myocardial Infarction: a Systematic Review of Preclinical In Vivo Studies

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Several prior studies have highlighted the promise of mesenchymal stem cells (MSCs) as tools for treating myocardial infarction (MI) patients. While MSCs were initially thought to mediate post-MI repair through differentiation and replacement of injured cells, they are now thought to function by releasing exosomes carrying important cargos which can prevent apoptosis and facilitate revascularization in the context of MI. Herein, we comprehensively survey prior preclinical studies examining MSC-derived exosomes (MSC-Exos) utility for the repair of MI-related tissue injury. In total, 24 relevant studies were identified in the PubMed, Web of Science, Embase, and Cochrane Library databases as per the PRISMA guidelines. In most studies, exosome-treated rodents exhibited improved cardiac function and angiogenesis together with decreased apoptotic cell death. MSC-Exos thus offer beneficial therapeutic efficacy when treating MI injury. However, further work will be necessary to standardize experimental preclinical models and to validate these results.

Graphical abstract

This systematic review provides a comprehensive overview of previous preclinical studies on the utility of exosomes derived from mesenchymal stem cells (MSCs) in the repair of myocardial infarction (MI) injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ATV:

Atorvastatin

CSCs:

Cardiac stem cells

EVs:

Extracellular vesicles

HF:

Heart failure

LAD:

Left anterior descending artery

lncRNAs:

Long non-coding RNAs

LV:

Left ventricular

LVEF:

Left ventricular ejection fraction

LVFS:

Left ventricular fractional shortening

LVESD:

Left ventricular end-systolic diameter

LVEDD:

Left ventricular end-diastolic diameter

Mecp2:

Methyl CpG binding protein 2

MI:

Myocardial infarction

MIF:

Macrophage migration inhibitory factor

miRNA:

MicroRNA

mRNA:

Messenger RNA

MSCs:

Mesenchymal stem cells

MSC-Exos:

MSC-derived exosomes

vWF:

von Willebrand factor

References

  1. McCarroll, C. S., He, W., Foote, K., Bradley, A., McGlynn, K., Vidler, F., et al. (2018). Runx1 deficiency protects against adverse cardiac remodeling after myocardial infarction. Circulation, 137(1), 57–70. https://doi.org/10.1161/circulationaha.117.028911

    Article  CAS  PubMed  Google Scholar 

  2. Spiliopoulos, S., Koerfer, R., & Tenderich, G. (2016). Acute myocardial infarction complicated by cardiogenic shock: Results of primary percutaneous coronary interventions are insufficient. European Journal of Cardio-Thoracic Surgery, 49(4), 1298. https://doi.org/10.1093/ejcts/ezv331

    Article  PubMed  Google Scholar 

  3. Shafei, A. E. S., Ali, M. A., Ghanem, H. G., Shehata, A. I., Abdelgawad, A. A., Handal, H. R., et al. (2017). Mesenchymal stem cell therapy: A promising cell-based therapy for treatment of myocardial infarction. The Journal of Gene Medicine, 19(12), e2995. https://doi.org/10.1002/jgm.2995

    Article  CAS  Google Scholar 

  4. Bao, L., Meng, Q., Li, Y., Deng, S., Yu, Z., Liu, Z., et al. (2017). C-Kit positive cardiac stem cells and bone marrow-derived mesenchymal stem cells synergistically enhance angiogenesis and improve cardiac function after myocardial infarction in a paracrine manner. Journal of Cardiac Failure, 23(5), 403–415. https://doi.org/10.1016/j.cardfail.2017.03.002

    Article  CAS  PubMed  Google Scholar 

  5. Dakhlallah, D., Zhang, J., Yu, L., Marsh, C. B., Angelos, M. G., & Khan, M. (2015). MicroRNA-133a engineered mesenchymal stem cells augment cardiac function and cell survival in the infarct heart. Journal of Cardiovascular Pharmacology, 65(3), 241–251. https://doi.org/10.1097/fjc.0000000000000183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wen, Z., Zheng, S., Zhou, C., Yuan, W., Wang, J., & Wang, T. (2012). Bone marrow mesenchymal stem cells for post-myocardial infarction cardiac repair: MicroRNAs as novel regulators. Journal of Cellular and Molecular Medicine, 16(4), 657–671. https://doi.org/10.1111/j.1582-4934.2011.01471.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Song, M., Heo, J., Chun, J. Y., Bae, H. S., Kang, J. W., Kang, H., et al. (2014). The paracrine effects of mesenchymal stem cells stimulate the regeneration capacity of endogenous stem cells in the repair of a bladder-outlet-obstruction-induced overactive bladder. Stem Cells and Development, 23(6), 654–663. https://doi.org/10.1089/scd.2013.0277

    Article  CAS  PubMed  Google Scholar 

  8. Liang, X., Ding, Y., Zhang, Y., Tse, H. F., & Lian, Q. (2014). Paracrine mechanisms of mesenchymal stem cell-based therapy: Current status and perspectives. Cell Transplantation, 23(9), 1045–1059. https://doi.org/10.3727/096368913x667709

    Article  PubMed  Google Scholar 

  9. Bogatcheva, N. V., & Coleman, M. E. (2019). Conditioned medium of mesenchymal stromal cells: A new class of therapeutics. Biochemistry, 84(11), 1375–1389. https://doi.org/10.1134/s0006297919110129

    Article  CAS  PubMed  Google Scholar 

  10. Lelek, J., & Zuba-Surma, E. K. (2020). Perspectives for future use of extracellular vesicles from umbilical cord- and adipose tissue-derived mesenchymal stem/stromal cells in regenerative therapies-synthetic review. International Journal of Molecular Sciences, 21(3), 799. https://doi.org/10.3390/ijms21030799

    Article  CAS  PubMed Central  Google Scholar 

  11. Tsiapalis, D., & O’Driscoll, L. (2020). Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells, 9(4), 991. https://doi.org/10.3390/cells9040991

    Article  CAS  PubMed Central  Google Scholar 

  12. Nazarenko, I. (2020). Extracellular vesicles: Recent developments in technology and perspectives for cancer liquid biopsy. Recent Results in Cancer Research, 215, 319–344. https://doi.org/10.1007/978-3-030-26439-0_17

    Article  CAS  PubMed  Google Scholar 

  13. Mignot, G., Roux, S., Thery, C., Ségura, E., & Zitvogel, L. (2006). Prospects for exosomes in immunotherapy of cancer. Journal of Cellular and Molecular Medicine, 10(2), 376–388. https://doi.org/10.1111/j.1582-4934.2006.tb00406.x

    Article  CAS  PubMed  Google Scholar 

  14. Chaput, N., Flament, C., Viaud, S., Taieb, J., Roux, S., Spatz, A., et al. (2006). Dendritic cell derived-exosomes: Biology and clinical implementations. Journal of Leukocyte Biology, 80(3), 471–478. https://doi.org/10.1189/jlb.0206094

    Article  CAS  PubMed  Google Scholar 

  15. Jin, J., & Menon, R. (2018). Placental exosomes: A proxy to understand pregnancy complications. American Journal of Reproductive Immunology, 79(5), e12788. https://doi.org/10.1111/aji.12788

    Article  CAS  PubMed  Google Scholar 

  16. Hoeeg, C., Frljak, S., Qayyum, A. A., Vrtovec, B., Kastrup, J., Ekblond, A., et al. (2020). Efficacy and mode of action of mesenchymal stem cells in non-ischemic dilated cardiomyopathy: A systematic review. Biomedicines, 8(12), 570. https://doi.org/10.3390/biomedicines8120570

    Article  CAS  PubMed Central  Google Scholar 

  17. Harrell, C. R., Jovicic, N., Djonov, V., Arsenijevic, N., & Volarevic, V. (2019). Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells, 8(12), 1605. https://doi.org/10.3390/cells8121605

    Article  CAS  PubMed Central  Google Scholar 

  18. Tan, S. J. O., Floriano, J. F., Nicastro, L., Emanueli, C., & Catapano, F. (2020). Novel applications of mesenchymal stem cell-derived exosomes for myocardial infarction therapeutics. Biomolecules, 10(5), 707. https://doi.org/10.3390/biom10050707

    Article  CAS  Google Scholar 

  19. Harrell, C. R., Jovicic, N., Djonov, V., & Volarevic, V. (2020). Therapeutic use of mesenchymal stem cell-derived exosomes: From basic science to clinics. Pharmaceutics, 12(5), 474. https://doi.org/10.3390/pharmaceutics12050474

    Article  CAS  PubMed Central  Google Scholar 

  20. Mokhtari, B., Aboutaleb, N., Nazarinia, D., Nikougoftar, M., Razavi Tousi, S. M. T., Molazem, M., et al. (2020). Comparison of the effects of intramyocardial and intravenous injections of human mesenchymal stem cells on cardiac regeneration after heart failure. Iranian Journal of Basic Medical Sciences, 23, 879. https://doi.org/10.22038/ijbms.2020.40886.9660

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hooijmans, C. R., Rovers, M. M., de Vries, R. B., Leenaars, M., Ritskes-Hoitinga, M., & Langendam, M. W. (2014). SYRCLE’s risk of bias tool for animal studies. BMC Medical Research Methodology, 14, 43. https://doi.org/10.1186/1471-2288-14-43

    Article  PubMed  PubMed Central  Google Scholar 

  22. Feng, Y., Huang, W., Wani, M., Yu, X., & Ashraf, M. (2014). Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS ONE, 9(2), e88685. https://doi.org/10.1371/journal.pone.0088685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang, K., Ma, R., Cai, W., Huang, W., Paul, C., Liang, J., et al. (2015). Exosomes secreted from CXCR4 overexpressing mesenchymal stem cells promote cardioprotection via Akt signaling pathway following myocardial infarction. Stem Cells International, 2015, 659890. https://doi.org/10.1155/2015/659890

    Article  PubMed  PubMed Central  Google Scholar 

  24. Yu, B., Kim, H. W., Gong, M., Wang, J., Millard, R. W., Wang, Y., et al. (2015). Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. International Journal of Cardiology, 182, 349–360. https://doi.org/10.1016/j.ijcard.2014.12.043

    Article  PubMed  Google Scholar 

  25. Teng, X., Chen, L., Chen, W., Yang, J., Yang, Z., & Shen, Z. (2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry, 37(6), 2415–2424. https://doi.org/10.1159/000438594

    Article  CAS  PubMed  Google Scholar 

  26. Zhang, Z., Yang, J., Yan, W., Li, Y., Shen, Z., & Asahara, T. (2016). Pretreatment of cardiac stem cells with exosomes derived from mesenchymal stem cells enhances myocardial repair. Journal of the American Heart Association, 5(1), e002856. https://doi.org/10.1161/jaha.115.002856

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shao, L., Zhang, Y., Lan, B., Wang, J., Zhang, Z., Zhang, L., et al. (2017). MiRNA-sequence indicates that mesenchymal stem cells and exosomes have similar mechanism to enhance cardiac repair. BioMed Research International, 2017, 4150705. https://doi.org/10.1155/2017/4150705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, J. G., Li, H. R., Han, J. X., Li, B. B., Yan, D., Li, H. Y., et al. (2018). GATA-4-expressing mouse bone marrow mesenchymal stem cells improve cardiac function after myocardial infarction via secreted exosomes. Scientific Reports, 8(1), 9047. https://doi.org/10.1038/s41598-018-27435-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, L. P., Tian, T., Wang, J. Y., He, J. N., Chen, T., Pan, M., et al. (2018). Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction. Theranostics, 8(22), 6163–6177. https://doi.org/10.7150/thno.28021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Ma, T., Chen, Y., Chen, Y., Meng, Q., Sun, J., Shao, L., et al. (2018). MicroRNA-132, delivered by mesenchymal stem cell-derived exosomes, promote angiogenesis in myocardial infarction. Stem Cells International, 2018, 3290372. https://doi.org/10.1155/2018/3290372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zhu, J., Lu, K., Zhang, N., Zhao, Y., Ma, Q., Shen, J., et al. (2018). Myocardial reparative functions of exosomes from mesenchymal stem cells are enhanced by hypoxia treatment of the cells via transferring microRNA-210 in an nSMase2-dependent way. Artificial Cells, Nanomedicine, and Biotechnology, 46(8), 1659–1670. https://doi.org/10.1080/21691401.2017.1388249

    Article  CAS  PubMed  Google Scholar 

  32. Xiao, C., Wang, K., Xu, Y., Hu, H., Zhang, N., Wang, Y., et al. (2018). Transplanted mesenchymal stem cells reduce autophagic flux in infarcted hearts via the exosomal transfer of miR-125b. Circulation Research, 123(5), 564–578. https://doi.org/10.1161/circresaha.118.312758

    Article  CAS  PubMed  Google Scholar 

  33. Zou, L., Ma, X., Lin, S., Wu, B., Chen, Y., & Peng, C. (2019). Bone marrow mesenchymal stem cell-derived exosomes protect against myocardial infarction by promoting autophagy. Experimental and Therapeutic Medicine, 18(4), 2574–2582. https://doi.org/10.3892/etm.2019.7874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Huang, P., Wang, L., Li, Q., Xu, J., Xu, J., Xiong, Y., et al. (2019). Combinatorial treatment of acute myocardial infarction using stem cells and their derived exosomes resulted in improved heart performance. Stem Cell Research & Therapy, 10(1), 300. https://doi.org/10.1186/s13287-019-1353-3

    Article  Google Scholar 

  35. Li, Y., Yang, R., Guo, B., Zhang, H., Zhang, H., Liu, S., et al. (2019). Exosomal miR-301 derived from mesenchymal stem cells protects myocardial infarction by inhibiting myocardial autophagy. Biochemical and Biophysical Research Communications, 514(1), 323–328. https://doi.org/10.1016/j.bbrc.2019.04.138

    Article  CAS  PubMed  Google Scholar 

  36. Xu, R., Zhang, F., Chai, R., Zhou, W., Hu, M., Liu, B., et al. (2019). Exosomes derived from pro-inflammatory bone marrow-derived mesenchymal stem cells reduce inflammation and myocardial injury via mediating macrophage polarization. Journal of Cellular and Molecular Medicine, 23(11), 7617–7631. https://doi.org/10.1111/jcmm.14635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang, C. S., Shao, K., Liu, C. W., Li, C. J., & Yu, B. T. (2019). Hypoxic preconditioning BMSCs-exosomes inhibit cardiomyocyte apoptosis after acute myocardial infarction by upregulating microRNA-24. European Review for Medical and Pharmacological Sciences, 23(15), 6691–6699. https://doi.org/10.26355/eurrev_201908_18560

    Article  PubMed  Google Scholar 

  38. Huang, P., Wang, L., Li, Q., Tian, X., Xu, J., Xu, J., et al. (2020). Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19. Cardiovascular Research, 116(2), 353–367. https://doi.org/10.1093/cvr/cvz139

    Article  CAS  PubMed  Google Scholar 

  39. Li, Y., Zhou, J., Zhang, O., Wu, X., Guan, X., Xue, Y., et al. (2020). Bone marrow mesenchymal stem cells-derived exosomal microRNA-185 represses ventricular remolding of mice with myocardial infarction by inhibiting SOCS2. International Immunopharmacology, 80, 106156. https://doi.org/10.1016/j.intimp.2019.106156

    Article  CAS  PubMed  Google Scholar 

  40. Sun, L., Zhu, W., Zhao, P., Zhang, J., Lu, Y., Zhu, Y., et al. (2020). Down-regulated exosomal MicroRNA-221 - 3p derived from senescent mesenchymal stem cells impairs heart repair. Frontiers in Cell and Developmental Biology, 8, 263. https://doi.org/10.3389/fcell.2020.00263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, X., Li, X., Zhu, W., Zhang, Y., Hong, Y., Liang, X., et al. (2020). Exosomes from mesenchymal stem cells overexpressing MIF enhance myocardial repair. Journal of Cellular Physiology, 235(11), 8010–8022. https://doi.org/10.1002/jcp.29456

    Article  CAS  PubMed  Google Scholar 

  42. Sun, J., Shen, H., Shao, L., Teng, X., Chen, Y., Liu, X., et al. (2020). HIF-1α overexpression in mesenchymal stem cell-derived exosomes mediates cardioprotection in myocardial infarction by enhanced angiogenesis. Stem Cell Research & Therapy, 11(1), 373. https://doi.org/10.1186/s13287-020-01881-7

    Article  CAS  Google Scholar 

  43. Cheng, H., Chang, S., Xu, R., Chen, L., Song, X., Wu, J., et al. (2020). Hypoxia-challenged MSC-derived exosomes deliver miR-210 to attenuate post-infarction cardiac apoptosis. Stem Cell Research & Therapy, 11(1), 224. https://doi.org/10.1186/s13287-020-01737-0

    Article  CAS  Google Scholar 

  44. Fu, D. L., Jiang, H., Li, C. Y., Gao, T., Liu, M. R., & Li, H. W. (2020). MicroRNA-338 in MSCs-derived exosomes inhibits cardiomyocyte apoptosis in myocardial infarction. European Review for Medical and Pharmacological Sciences, 24(19), 10107–10117. https://doi.org/10.26355/eurrev_202010_23230

    Article  PubMed  Google Scholar 

  45. Wang, S., Li, L., Liu, T., Jiang, W., & Hu, X. (2020). miR-19a/19b-loaded exosomes in combination with mesenchymal stem cell transplantation in a preclinical model of myocardial infarction. Regenerative Medicine, 15(6), 1749–1759. https://doi.org/10.2217/rme-2019-0136

    Article  CAS  PubMed  Google Scholar 

  46. Cheng, W., Wang, L., Yang, T., Wu, A., Wang, B., Li, T., et al. (2020). Qiliqiangxin capsules optimize cardiac metabolism flexibility in rats with heart failure after myocardial infarction. Frontiers in Physiology, 11, 805. https://doi.org/10.3389/fphys.2020.00805

    Article  PubMed  PubMed Central  Google Scholar 

  47. He, X., Yao, M. W., Zhu, M., Liang, D. L., Guo, W., Yang, Y., et al. (2018). Metformin induces apoptosis in mesenchymal stromal cells and dampens their therapeutic efficacy in infarcted myocardium. Stem Cell Research & Therapy, 9(1), 306. https://doi.org/10.1186/s13287-018-1057-0

    Article  CAS  Google Scholar 

  48. Yu, W., Sun, S., Xu, H., Li, C., Ren, J., & Zhang, Y. (2020). TBC1D15/RAB7-regulated mitochondria-lysosome interaction confers cardioprotection against acute myocardial infarction-induced cardiac injury. Theranostics, 10(24), 11244–11263. https://doi.org/10.7150/thno.46883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang, H., Yin, Y., Liu, Y., Zou, G., Huang, H., Qian, P., et al. (2020). Necroptosis mediated by impaired autophagy flux contributes to adverse ventricular remodeling after myocardial infarction. Biochemical Pharmacology, 175, 113915. https://doi.org/10.1016/j.bcp.2020.113915

    Article  CAS  PubMed  Google Scholar 

  50. Walker, B. W., Lara, R. P., Yu, C. H., Sani, E. S., Kimball, W., Joyce, S., et al. (2019). Engineering a naturally-derived adhesive and conductive cardiopatch. Biomaterials, 207, 89–101. https://doi.org/10.1016/j.biomaterials.2019.03.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Won, Y. W., Bull, D. A., & Kim, S. W. (2014). Functional polymers of gene delivery for treatment of myocardial infarct. Journal of Controlled Release, 195, 110–119. https://doi.org/10.1016/j.jconrel.2014.07.041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zeng, Y., Li, J., Wang, H. X., Guo, S. B., Yang, H., Zeng, X. J., et al. (2013). Transcriptional effects of E3 ligase atrogin-1/MAFbx on apoptosis, hypertrophy and inflammation in neonatal rat cardiomyocytes. PLoS ONE, 8(1), e53831. https://doi.org/10.1371/journal.pone.0053831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kim, S. H., Jeong, J. H., Ou, M., Yockman, J. W., Kim, S. W., & Bull, D. A. (2008). Cardiomyocyte-targeted siRNA delivery by prostaglandin E(2)-Fas siRNA polyplexes formulated with reducible poly(amido amine) for preventing cardiomyocyte apoptosis. Biomaterials, 29(33), 4439–4446. https://doi.org/10.1016/j.biomaterials.2008.07.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Huang, S., & Frangogiannis, N. G. (2018). Anti-inflammatory therapies in myocardial infarction: Failures, hopes and challenges. British Journal of Pharmacology, 175(9), 1377–1400. https://doi.org/10.1111/bph.14155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Adrover, J. M., Del Fresno, C., Crainiciuc, G., Cuartero, M. I., Casanova-Acebes, M., Weiss, L. A., et al. (2019). A neutrophil timer coordinates immune defense and vascular protection. Immunity, 50(2), 390-402.e310. https://doi.org/10.1016/j.immuni.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  56. Gast, M., Rauch, B. H., Haghikia, A., Nakagawa, S., Haas, J., Stroux, A., et al. (2019). Long noncoding RNA NEAT1 modulates immune cell functions and is suppressed in early onset myocardial infarction patients. Cardiovascular Research, 115(13), 1886–1906. https://doi.org/10.1093/cvr/cvz085

    Article  CAS  PubMed  Google Scholar 

  57. Sahoo, S., & Losordo, D. W. (2014). Exosomes and cardiac repair after myocardial infarction. Circulation Research, 114(2), 333–344. https://doi.org/10.1161/circresaha.114.300639

    Article  CAS  PubMed  Google Scholar 

  58. Yu, H., Lu, K., Zhu, J., & Wang, J. (2017). Stem cell therapy for ischemic heart diseases. British Medical Bulletin, 121(1), 135–154. https://doi.org/10.1093/bmb/ldw059

    Article  CAS  PubMed  Google Scholar 

  59. Bernstock, J. D., Peruzzotti-Jametti, L., Ye, D., Gessler, F. A., Maric, D., Vicario, N., et al. (2017). Neural stem cell transplantation in ischemic stroke: A role for preconditioning and cellular engineering. Journal of Cerebral Blood Flow and Metabolism, 37(7), 2314–2319. https://doi.org/10.1177/0271678x17700432

    Article  PubMed  PubMed Central  Google Scholar 

  60. Maffioletti, S. M., Noviello, M., English, K., & Tedesco, F. S. (2014). Stem cell transplantation for muscular dystrophy: The challenge of immune response. BioMed Research International, 2014, 964010. https://doi.org/10.1155/2014/964010

    Article  PubMed  PubMed Central  Google Scholar 

  61. Duran, J. M., Makarewich, C. A., Sharp, T. E., Starosta, T., Zhu, F., Hoffman, N. E., et al. (2013). Bone-derived stem cells repair the heart after myocardial infarction through transdifferentiation and paracrine signaling mechanisms. Circulation Research, 113(5), 539–552. https://doi.org/10.1161/circresaha.113.301202

    Article  CAS  PubMed  Google Scholar 

  62. Vizoso, F. J., Eiro, N., Cid, S., Schneider, J., & Perez-Fernandez, R. (2017). Mesenchymal Stem Cell Secretome: Toward Cell-Free Therapeutic Strategies in Regenerative Medicine. International Journal of Molecular Sciences, 18(9), 1852. https://doi.org/10.3390/ijms18091852

    Article  CAS  PubMed Central  Google Scholar 

  63. Bacakova, L., Zarubova, J., Travnickova, M., Musilkova, J., Pajorova, J., Slepicka, P., et al. (2018). Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells - A review. Biotechnology Advances, 36(4), 1111–1126. https://doi.org/10.1016/j.biotechadv.2018.03.011

    Article  PubMed  Google Scholar 

  64. Nesselmann, C., Ma, N., Bieback, K., Wagner, W., Ho, A., Konttinen, Y. T., et al. (2008). Mesenchymal stem cells and cardiac repair. Journal of Cellular and Molecular Medicine, 12(5b), 1795–1810. https://doi.org/10.1111/j.1582-4934.2008.00457.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khasawneh, R. R., Abu-El-Rub, E., Serhan, A. O., Serhan, B. O., & Abu-El-Rub, H. (2019). Cross talk between 26S proteasome and mitochondria in human mesenchymal stem cells’ ability to survive under hypoxia stress. Journal of Physiological Sciences, 69(6), 1005–1017. https://doi.org/10.1007/s12576-019-00720-6

    Article  CAS  Google Scholar 

  66. Mead, B., & Tomarev, S. (2017). Bone marrow-derived mesenchymal stem cells-derived exosomes promote survival of retinal ganglion cells through miRNA-dependent mechanisms. Stem Cells Translational Medicine, 6(4), 1273–1285. https://doi.org/10.1002/sctm.16-0428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Li, N., Rochette, L., Wu, Y., & Rosenblatt-Velin, N. (2019). New insights into the role of exosomes in the heart after myocardial infarction. Journal of Cardiovascular Translational Research, 12(1), 18–27. https://doi.org/10.1007/s12265-018-9831-z

    Article  CAS  PubMed  Google Scholar 

  68. Katare, R., Riu, F., Mitchell, K., Gubernator, M., Campagnolo, P., Cui, Y., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109(8), 894–906. https://doi.org/10.1161/circresaha.111.251546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sun, L., Zhang, Y., Zhang, J., Wang, J., & Xing, S. (2020). Atorvastatin improves the proliferation and migration of endothelial progenitor cells via the miR-221/VEGFA axis. Bioscience Reports, 40(11), BSR20193053. https://doi.org/10.1042/BSR20193053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Sayed, D., & Abdellatif, M. (2011). MicroRNAs in development and disease. Physiological Reviews, 91(3), 827–887. https://doi.org/10.1152/physrev.00006.2010

    Article  CAS  PubMed  Google Scholar 

  71. Kir, D., Schnettler, E., Modi, S., & Ramakrishnan, S. (2018). Regulation of angiogenesis by microRNAs in cardiovascular diseases. Angiogenesis, 21(4), 699–710. https://doi.org/10.1007/s10456-018-9632-7

    Article  CAS  PubMed  Google Scholar 

  72. Coskunpinar, E., Cakmak, H. A., Kalkan, A. K., Tiryakioglu, N. O., Erturk, M., & Ongen, Z. (2016). Circulating miR-221-3p as a novel marker for early prediction of acute myocardial infarction. Gene, 591(1), 90–96. https://doi.org/10.1016/j.gene.2016.06.059

    Article  CAS  PubMed  Google Scholar 

  73. Täubel, J., Hauke, W., Rump, S., Viereck, J., Batkai, S., Poetzsch, J., et al. (2021). Novel antisense therapy targeting microRNA-132 in patients with heart failure: Results of a first-in-human Phase 1b randomized, double-blind, placebo-controlled study. European Heart Journal, 42(2), 178–188. https://doi.org/10.1093/eurheartj/ehaa898

    Article  CAS  PubMed  Google Scholar 

  74. Zhang, Y., Zhu, W., He, H., Fan, B., Deng, R., Hong, Y., et al. (2019). Macrophage migration inhibitory factor rejuvenates aged human mesenchymal stem cells and improves myocardial repair. Aging, 11(24), 12641–12660. https://doi.org/10.18632/aging.102592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gidlöf, O., van der Brug, M., Ohman, J., Gilje, P., Olde, B., Wahlestedt, C., et al. (2013). Platelets activated during myocardial infarction release functional miRNA, which can be taken up by endothelial cells and regulate ICAM1 expression. Blood, 121(19), 3908–3917. https://doi.org/10.1182/blood-2012-10-461798 s3901–3926.

    Article  CAS  PubMed  Google Scholar 

  76. Silva, D., Carneiro, F. D., Almeida, K. C., & Fernandes-Santos, C. (2018). Role of miRNAs on the pathophysiology of cardiovascular diseases. Arquivos Brasileiros de Cardiologia, 111(5), 738–746. https://doi.org/10.5935/abc.20180215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li, L., Li, S., Wu, M., Chi, C., Hu, D., Cui, Y., et al. (2019). Early diagnostic value of circulating microRNAs in patients with suspected acute myocardial infarction. Journal of Cellular Physiology, 234(8), 13649–13658. https://doi.org/10.1002/jcp.28045

    Article  CAS  PubMed  Google Scholar 

  78. Dai, S., Wei, D., Wu, Z., Zhou, X., Wei, X., Huang, H., et al. (2008). Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Molecular Therapy, 16(4), 782–790. https://doi.org/10.1038/mt.2008.1

    Article  CAS  PubMed  Google Scholar 

  79. Dougherty, J. A., Mergaye, M., Kumar, N., Chen, C. A., Angelos, M. G., & Khan, M. (2017). Potential Role of Exosomes in Mending a Broken Heart: Nanoshuttles Propelling Future Clinical Therapeutics Forward. Stem Cells International, 2017, 5785436. https://doi.org/10.1155/2017/5785436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kishore, R., & Khan, M. (2016). More than tiny sacks: Stem cell exosomes as cell-free modality for cardiac repair. Circulation Research, 118(2), 330–343. https://doi.org/10.1161/circresaha.115.307654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Faggion, C. M., Jr., Diaz, K. T., Aranda, L., Gabel, F., Listl, S., & Alarcón, M. A. (2017). The risk of bias of animal experiments in implant dentistry: A methodological study. Clinical Oral Implants Research, 28(7), e39–e45. https://doi.org/10.1111/clr.12852

    Article  PubMed  Google Scholar 

  82. du Sert, N. P., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., et al. (2020). The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biology, 18(7), e3000410. https://doi.org/10.1371/journal.pbio.3000410

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the National Natural Science Foundation of China (Grant No. 81973787) and the Postdoctoral Research Foundation of China (2019M660574).

Author information

Authors and Affiliations

Authors

Contributions

H.M. and W.T.C. have contributed equally to this work. Theme and design of the research: H.M.; article retrieval: H.M. and L.W.; data extraction: S.Q.C., Y.T., Z.W.L., Y.L., and W.T.C.; verification of data: H.M.; writing of the manuscript: H.M.; critical revision of the manuscript for intellectual content: W.T.C. and M.J.Z.; obtaining funding: M.J.Z. and H.M.

Corresponding author

Correspondence to Mingjing Zhao.

Ethics declarations

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Communicated by Associate Editor Junjie Xiao oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 41 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, H., Cheng, W., Wang, L. et al. Mesenchymal Stem Cell Exosomes in the Treatment of Myocardial Infarction: a Systematic Review of Preclinical In Vivo Studies. J. of Cardiovasc. Trans. Res. 15, 317–339 (2022). https://doi.org/10.1007/s12265-021-10168-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-021-10168-y

Keywords

Navigation