Skip to main content
Log in

Peripheral Blood RNAs and Left Ventricular Dysfunction after Myocardial Infarction: Towards Translation into Clinical Practice

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The treatment and early outcome of patients with acute myocardial infarction (MI) have dramatically improved the past decades, but the incidence of left ventricular (LV) dysfunction post-MI remains high. Peripheral blood RNAs reflect pathophysiological changes during acute MI and the inflammatory process. Therefore, these RNAs are promising new markers to molecularly phenotype patients and improve the early identification of patients at risk of subsequent LV dysfunction. We here discuss the coding and long non-coding RNAs that can be measured in peripheral blood of patients with acute MI and list the advantages and limitations for implementation in clinical practice. Although some studies provide preliminary evidence of their diagnostic and prognostic potential, the use of these makers has not yet been implemented in clinical practice. The added value of RNAs to improve treatment and outcome remains to be determined in larger clinical studies. International consortia are now catalyzing renewed efforts to investigate novel RNAs that may improve post-MI outcome in a precision-medicine approach.

Peripheral blood RNAs reflect the inflammatory changes in acute MI. A number of studies provide preliminary evidence of their prognostic potential, although the use of these makers has not yet been assessed in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Townsend, N., Wilson, L., Bhatnagar, P., Wickramasinghe, K., Rayner, M., & Nichols, M. (2016). Cardiovascular disease in Europe: epidemiological update 2016. European Heart Journal, 37(42), 3232–3245. https://doi.org/10.1093/eurheartj/ehw334.

    Article  PubMed  Google Scholar 

  2. Cung, T. T., Morel, O., Cayla, G., Rioufol, G., Garcia-Dorado, D., Angoulvant, D., et al. (2015). Cyclosporine before PCI in patients with acute myocardial infarction. New England Journal of Medicine. https://doi.org/10.1056/NEJMoa1505489.

  3. Janssens, S. P., Bogaert, J., Zalewski, J., Toth, A., Adriaenssens, T., Belmans, A., et al. (2018). Nitric oxide for inhalation in ST-elevation myocardial infarction (NOMI): A multicentre, double-blind, randomized controlled trial. European Heart Journal, 39(29), 2717–2725. https://doi.org/10.1093/eurheartj/ehy232.

    Article  CAS  PubMed  Google Scholar 

  4. van Hout, G. P., Jansen of Lorkeers, S. J, Wever, K. E., Sena, E. S., Kouwenberg, L. H., van Solinge, W. W., et al. (2016). Translational failure of anti-inflammatory compounds for myocardial infarction: A meta-analysis of large animal models. Cardiovascular Research, 109(2), 240–248. https://doi.org/10.1093/cvr/cvv239.

    Article  CAS  PubMed  Google Scholar 

  5. Hausenloy, D. J., Garcia-Dorado, D., Botker, H. E., Davidson, S. M., Downey, J., Engel, F. B., et al. (2017). Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. Cardiovascular Research, 113(6), 564–585. https://doi.org/10.1093/cvr/cvx049.

    Article  CAS  PubMed  Google Scholar 

  6. Van Aelst, L. N., & Heymans, S. (2013). MicroRNAs as biomarkers for ischemic heart disease. Journal of Cardiovascular Translational Research, 6(4), 458–470. https://doi.org/10.1007/s12265-013-9466-z.

    Article  PubMed  Google Scholar 

  7. Navickas, R., Gal, D., Laucevicius, A., Taparauskaite, A., Zdanyte, M., & Holvoet, P. (2016). Identifying circulating microRNAs as biomarkers of cardiovascular disease: A systematic review. Cardiovascular Research, 111(4), 322–337. https://doi.org/10.1093/cvr/cvw174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Morrow, D. A., Antman, E. M., Charlesworth, A., Cairns, R., Murphy, S. A., de Lemos, J. A., et al. (2000). TIMI risk score for ST-elevation myocardial infarction: A convenient, bedside, clinical score for risk assessment at presentation: An intravenous nPA for treatment of infarcting myocardium early II trial substudy. Circulation, 102(17), 2031–2037.

    Article  CAS  Google Scholar 

  9. Omland, T., Aakvaag, A., Bonarjee, V. V., Caidahl, K., Lie, R. T., Nilsen, D. W., et al. (1996). Plasma brain natriuretic peptide as an indicator of left ventricular systolic function and long-term survival after acute myocardial infarction. Comparison with plasma atrial natriuretic peptide and N-terminal proatrial natriuretic peptide. Circulation, 93(11), 1963–1969.

    Article  CAS  Google Scholar 

  10. Brooks, G. C., Lee, B. K., Rao, R., Lin, F., Morin, D. P., Zweibel, S. L., et al. (2016). Predicting persistent left ventricular dysfunction following myocardial infarction: The PREDICTS study. Journal of the American College of Cardiology, 67(10), 1186–1196. https://doi.org/10.1016/j.jacc.2015.12.042.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Stone, G. W., Selker, H. P., Thiele, H., Patel, M. R., Udelson, J. E., Ohman, E. M., et al. (2016). Relationship between infarct size and outcomes following primary PCI: Patient-level analysis from 10 randomized trials. Journal of the American College of Cardiology, 67(14), 1674–1683. https://doi.org/10.1016/j.jacc.2016.01.069.

    Article  PubMed  Google Scholar 

  12. de Waha, S., Patel, M. R., Granger, C. B., Ohman, E. M., Maehara, A., Eitel, I., et al. (2017). Relationship between microvascular obstruction and adverse events following primary percutaneous coronary intervention for ST-segment elevation myocardial infarction: An individual patient data pooled analysis from seven randomized trials. European Heart Journal, 38(47), 3502–3510. https://doi.org/10.1093/eurheartj/ehx414.

    Article  CAS  PubMed  Google Scholar 

  13. Carrick, D., Haig, C., Ahmed, N., McEntegart, M., Petrie, M. C., Eteiba, H., et al. (2016). Myocardial hemorrhage after acute reperfused ST-segment-elevation myocardial infarction: Relation to microvascular obstruction and prognostic significance. Circulation: Cardiovascular Imaging, 9(1), e004148. https://doi.org/10.1161/circimaging.115.004148.

    Article  PubMed  Google Scholar 

  14. Orn, S., Manhenke, C., Ueland, T., Damas, J. K., Mollnes, T. E., Edvardsen, T., et al. (2009). C-reactive protein, infarct size, microvascular obstruction, and left-ventricular remodelling following acute myocardial infarction. European Heart Journal, 30(10), 1180–1186. https://doi.org/10.1093/eurheartj/ehp070.

    Article  CAS  PubMed  Google Scholar 

  15. Prabhu, S. D., & Frangogiannis, N. G. (2016). The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis. Circulation Research, 119(1), 91–112. https://doi.org/10.1161/CIRCRESAHA.116.303577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Arslan, F., de Kleijn, D. P., & Pasterkamp, G. (2011). Innate immune signaling in cardiac ischemia. Nature Reviews: Cardiology, 8(5), 292–300. https://doi.org/10.1038/nrcardio.2011.38.

    Article  CAS  PubMed  Google Scholar 

  17. Rienks, M., Carai, P., Bitsch, N., Schellings, M., Vanhaverbeke, M., Verjans, J., et al. (2017). Sema3A promotes the resolution of cardiac inflammation after myocardial infarction. Basic Research in Cardiology, 112(4), 42. https://doi.org/10.1007/s00395-017-0630-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van Aelst, L. N., Voss, S., Carai, P., Van Leeuwen, R., Vanhoutte, D., Sanders-van Wijk, S., et al. (2015). Osteoglycin prevents cardiac dilatation and dysfunction after myocardial infarction through infarct collagen strengthening. Circulation Research, 116(3), 425–436. https://doi.org/10.1161/circresaha.116.304599.

    Article  PubMed  Google Scholar 

  19. Reindl, M., Reinstadler, S. J., Feistritzer, H. J., Klug, G., Tiller, C., Mair, J., et al. (2017). Relation of inflammatory markers with myocardial and microvascular injury in patients with reperfused ST-elevation myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 6(7), 640–649. https://doi.org/10.1177/2048872616661691.

    Article  PubMed  Google Scholar 

  20. Arruda-Olson, A. M., Reeder, G. S., Bell, M. R., Weston, S. A., & Roger, V. L. (2009). Neutrophilia predicts death and heart failure after myocardial infarction: A community-based study. Circulation: Cardiovascular Quality and Outcomes, 2(6), 656–662. https://doi.org/10.1161/circoutcomes.108.831024.

    Article  Google Scholar 

  21. Pietila, K. O., Harmoinen, A. P., Jokiniitty, J., & Pasternack, A. I. (1996). Serum C-reactive protein concentration in acute myocardial infarction and its relationship to mortality during 24 months of follow-up in patients under thrombolytic treatment. European Heart Journal, 17(9), 1345–1349.

    Article  CAS  Google Scholar 

  22. Lim, P., Moutereau, S., Simon, T., Gallet, R., Probst, V., Ferrieres, J., et al. (2013). Usefulness of fetuin-A and C-reactive protein concentrations for prediction of outcome in acute coronary syndromes (from the French Registry of Acute ST-Elevation Non-ST-Elevation Myocardial Infarction [FAST-MI]). American Journal of Cardiology, 111(1), 31–37. https://doi.org/10.1016/j.amjcard.2012.08.042.

    Article  CAS  Google Scholar 

  23. Vanhaverbeke, M., Veltman, D., Pattyn, N., De Crem, N., Gillijns, H., Cornelissen, V., et al. (2018). C-reactive protein during and after myocardial infarction in relation to cardiac injury and left ventricular function at follow-up. Clinical Cardiology, 41(9), 1201–1206. https://doi.org/10.1002/clc.23017.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zouggari, Y., Ait-Oufella, H., Bonnin, P., Simon, T., Sage, A. P., Guerin, C., et al. (2013). B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nature Medicine, 19(10), 1273–1280. https://doi.org/10.1038/nm.3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Corcoran, R. B., & Chabner, B. A. (2018). Application of cell-free DNA analysis to cancer treatment. New England Journal of Medicine, 379(18), 1754–1765. https://doi.org/10.1056/NEJMra1706174.

    Article  CAS  Google Scholar 

  26. Uchida, S., & Dimmeler, S. (2015). Long noncoding RNAs in cardiovascular diseases. Circulation Research, 116(4), 737–750. https://doi.org/10.1161/CIRCRESAHA.116.302521.

    Article  CAS  PubMed  Google Scholar 

  27. Boon, R. A., Jae, N., Holdt, L., & Dimmeler, S. (2016). Long noncoding RNAs: From clinical genetics to therapeutic targets? Journal of the American College of Cardiology, 67(10), 1214–1226. https://doi.org/10.1016/j.jacc.2015.12.051.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, D., & Thum, T. (2019). RNA-based diagnostic and therapeutic strategies for cardiovascular disease. Nature Reviews: Cardiology, 16(11), 661–674. https://doi.org/10.1038/s41569-019-0218-x.

    Article  PubMed  Google Scholar 

  29. Vilades, D., Martinez-Camblor, P., Ferrero-Gregori, A., Bar, C., Lu, D., Xiao, K., et al. (2020). Plasma circular RNA hsa_circ_0001445 and coronary artery disease: Performance as a biomarker. FASEB Journal. https://doi.org/10.1096/fj.201902507R.

  30. Creemers, E. E., Tijsen, A. J., & Pinto, Y. M. (2012). Circulating microRNAs: Novel biomarkers and extracellular communicators in cardiovascular disease? Circulation Research, 110(3), 483–495. https://doi.org/10.1161/CIRCRESAHA.111.247452.

    Article  CAS  PubMed  Google Scholar 

  31. Holvoet, P., Vanhaverbeke, M., Bloch, K., Baatsen, P., Sinnaeve, P., & Janssens, S. (2016). Low MT-CO1 in monocytes and microvesicles is associated with outcome in patients with coronary artery disease. Journal of the American Heart Association, 5(12), e004207. https://doi.org/10.1161/JAHA.116.004207.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Corkum, C. P., Ings, D. P., Burgess, C., Karwowska, S., Kroll, W., & Michalak, T. I. (2015). Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT) and standard density gradient. BMC Immunology, 16, 48. https://doi.org/10.1186/s12865-015-0113-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vanhaverbeke, M., Vausort, M., Veltman, D., Zhang, L., Wu, M., Laenen, G., et al. (2019). Peripheral blood RNA levels of QSOX1 and PLBD1 are new independent predictors of left ventricular dysfunction after acute myocardial infarction. Circulation. Genomic and precision medicine. https://doi.org/10.1161/CIRCGEN.1119.002656, https://doi.org/10.1161/CIRCGEN.119.002656.

  34. Damas, J. K., Boullier, A., Waehre, T., Smith, C., Sandberg, W. J., Green, S., et al. (2005). Expression of fractalkine (CX3CL1) and its receptor, CX3CR1, is elevated in coronary artery disease and is reduced during statin therapy. Arteriosclerosis, Thrombosis, and Vascular Biology, 25(12), 2567–2572. https://doi.org/10.1161/01.ATV.0000190672.36490.7b.

    Article  CAS  PubMed  Google Scholar 

  35. Waehre, T., Damas, J. K., Pedersen, T. M., Gullestad, L., Yndestad, A., Andreassen, A. K., et al. (2006). Clopidogrel increases expression of chemokines in peripheral blood mononuclear cells in patients with coronary artery disease: Results of a double-blind placebo-controlled study. Journal of Thrombosis and Haemostasis, 4(10), 2140–2147. https://doi.org/10.1111/j.1538-7836.2006.02131.x.

    Article  CAS  PubMed  Google Scholar 

  36. Napoli, C., Lerman, L. O., Sica, V., Lerman, A., Tajana, G., & de Nigris, F. (2003). Microarray analysis: A novel research tool for cardiovascular scientists and physicians. Heart, 89(6), 597–604.

    Article  CAS  Google Scholar 

  37. Rogawski, D. S., Vitanza, N. A., Gauthier, A. C., Ramaswamy, V., & Koschmann, C. (2017). Integrating RNA sequencing into neuro-oncology practice. Translational Research, 189, 93–104. https://doi.org/10.1016/j.trsl.2017.06.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., et al. (2009). The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clinical Chemistry, 55(4), 611–622. https://doi.org/10.1373/clinchem.2008.112797.

    Article  CAS  PubMed  Google Scholar 

  39. Healy, A. M., Pickard, M. D., Pradhan, A. D., Wang, Y., Chen, Z., Croce, K., et al. (2006). Platelet expression profiling and clinical validation of myeloid-related protein-14 as a novel determinant of cardiovascular events. Circulation, 113(19), 2278–2284. https://doi.org/10.1161/CIRCULATIONAHA.105.607333.

    Article  CAS  PubMed  Google Scholar 

  40. Devaux, Y., Bousquenaud, M., Rodius, S., Marie, P. Y., Maskali, F., Zhang, L., et al. (2011). Transforming growth factor beta receptor 1 is a new candidate prognostic biomarker after acute myocardial infarction. BMC Medical Genomics, 4, 83. https://doi.org/10.1186/1755-8794-4-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Azuaje, F., Devaux, Y., & Wagner, D. R. (2010). Integrative pathway-centric modeling of ventricular dysfunction after myocardial infarction. PLoS One, 5(3), e9661. https://doi.org/10.1371/journal.pone.0009661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Azuaje, F. J., Rodius, S., Zhang, L., Devaux, Y., & Wagner, D. R. (2011). Information encoded in a network of inflammation proteins predicts clinical outcome after myocardial infarction. BMC Medical Genomics, 4, 59. https://doi.org/10.1186/1755-8794-4-59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Devaux, Y., Azuaje, F., Vausort, M., Yvorra, C., & Wagner, D. R. (2010). Integrated protein network and microarray analysis to identify potential biomarkers after myocardial infarction. Functional & Integrative Genomics, 10(3), 329–337. https://doi.org/10.1007/s10142-010-0169-0.

    Article  CAS  Google Scholar 

  44. Kiliszek, M., Burzynska, B., Michalak, M., Gora, M., Winkler, A., Maciejak, A., et al. (2012). Altered gene expression pattern in peripheral blood mononuclear cells in patients with acute myocardial infarction. PLoS One, 7(11), e50054. https://doi.org/10.1371/journal.pone.0050054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Velenta, Z., Mazura, M., Grünfeldova, P., Peleska, J., Tomeckova, M., Kaline, J., et al. (2012). Determinants of excess genetic risk of acute myocardial infarction - a matched case-control study. European Journal for Biomedical Informatics, 8(1), 34–43.

    Google Scholar 

  46. Suresh, R., Li, X., Chiriac, A., Goel, K., Terzic, A., Perez-Terzic, C., et al. (2014). Transcriptome from circulating cells suggests dysregulated pathways associated with long-term recurrent events following first-time myocardial infarction. Journal of Molecular and Cellular Cardiology, 74, 13–21. https://doi.org/10.1016/j.yjmcc.2014.04.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kim, J., Ghasemzadeh, N., Eapen, D. J., Chung, N. C., Storey, J. D., Quyyumi, A. A., et al. (2014). Gene expression profiles associated with acute myocardial infarction and risk of cardiovascular death. Genome Medicine, 6(5), 40. https://doi.org/10.1186/gm560.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. van der Pouw Kraan, T. C., Bernink, F. J., Yildirim, C., Koolwijk, P., Baggen, J. M., Timmers, L., et al. (2014). Systemic toll-like receptor and interleukin-18 pathway activation in patients with acute ST elevation myocardial infarction. Journal of Molecular and Cellular Cardiology, 67, 94–102. https://doi.org/10.1016/j.yjmcc.2013.12.021.

    Article  CAS  PubMed  Google Scholar 

  49. Boileau, A., Lalem, T., Vausort, M., Zhang, L., & Devaux, Y. (2018). A 3-gene panel improves the prediction of left ventricular dysfunction after acute myocardial infarction. International Journal of Cardiology, 254, 28–35. https://doi.org/10.1016/j.ijcard.2017.10.109.

    Article  PubMed  Google Scholar 

  50. Vausort, M., Wagner, D. R. R., & Devaux, Y. (2014). Long non-coding RNAs in patients with acute myocardial infarction. Circulation Research. https://doi.org/10.1161/circresaha.115.303836.

  51. Kumarswamy, R., Bauters, C., Volkmann, I., Maury, F., Fetisch, J., Holzmann, A., et al. (2014). The circulating long non-coding RNA LIPCAR predicts survival in heart failure patients. Circulation Research. https://doi.org/10.1161/CIRCRESAHA.114.303915.

  52. Zhang, Y., Sun, L., Xuan, L., Pan, Z., Li, K., Liu, S., et al. (2016). Reciprocal changes of circulating long non-coding RNAs ZFAS1 and CDR1AS predict acute myocardial infarction. Scientific Reports, 6, 22384. https://doi.org/10.1038/srep22384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Yan, Y., Zhang, B., Liu, N., Qi, C., Xiao, Y., Tian, X., et al. (2016). Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. BioMed Research International, 2016, 8079372. https://doi.org/10.1155/2016/8079372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Vausort, M., Salgado-Somoza, A., Zhang, L., Leszek, P., Scholz, M., Teren, A., et al. (2016). Myocardial infarction-associated circular RNA predicting left ventricular dysfunction. Journal of the American College of Cardiology, 68(11), 1247–1248. https://doi.org/10.1016/j.jacc.2016.06.040.

    Article  PubMed  Google Scholar 

  55. Gao, L., Liu, Y., Guo, S., Yao, R., Wu, L., Xiao, L., et al. (2017). Circulating long noncoding RNA HOTAIR is an essential mediator of acute myocardial infarction. Cellular Physiology and Biochemistry, 44(4), 1497–1508. https://doi.org/10.1159/000485588.

    Article  CAS  PubMed  Google Scholar 

  56. Schulte, C., Barwari, T., Joshi, A., Theofilatos, K., Zampetaki, A., Barallobre-Barreiro, J., et al. (2019). Comparative analysis of circulating noncoding RNAs versus protein biomarkers in the detection of myocardial injury. Circulation Research, 125(3), 328–340. https://doi.org/10.1161/CIRCRESAHA.119.314937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gomes, C. P. C., Ágg, B., Andova, A., Arslan, S., Baker, A., Barteková, M., On behalf of the EU CardioRNA COST Action CA17129, et al. (2019). Catalyzing transcriptomics research in cardiovascular disease: The CardioRNA COST action CA17129. Non-Coding RNA, 5(31). https://doi.org/10.3390/ncrna5020031.

Download references

Funding

This study was funded by Research Foundation Flanders, a score grant from the University of Leuven (PF10/014) and the Frans Van de Werf Fund for Clinical Cardiovascular Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maarten Vanhaverbeke.

Ethics declarations

This article does not contain any studies with human participants performed by any of the authors.

Conflict of interest

SJ is holder of a named chair at KU Leuven, financed by AstraZeneca. MVH is Belgian management committee substitute of the EU-CostAction CardioRNA CA17129. DV and PRS declare they have no conflict of interest.

Additional information

Associate Editor Junjie Xiao oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanhaverbeke, M., Veltman, D., Janssens, S. et al. Peripheral Blood RNAs and Left Ventricular Dysfunction after Myocardial Infarction: Towards Translation into Clinical Practice. J. of Cardiovasc. Trans. Res. 14, 213–221 (2021). https://doi.org/10.1007/s12265-020-10048-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-020-10048-x

Keywords

Subject terms

Navigation