Skip to main content

Advertisement

Log in

Current Modalities and Mechanisms Underlying Cardioprotection by Ischemic Conditioning

  • Review
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Ischemic preconditioning is a process which serves to mitigate reperfusion injury. Preconditioning of the heart can be achieved through natural, pharmacological, and mechanical means. Mechanical preconditioning appears to have the greatest chance of good outcomes while methods employing pharmacologic preconditioning have been largely unsuccessful. Remote ischemic preconditioning achieves a cardioprotective effect by applying cycles of ischemia and reperfusion in a distal limb, stimulating the release of a neurohumoral cardioprotective factor incited by stimulation of afferent neurons. The cardioprotective factor stimulates the reperfusion injury salvage kinase (RISK) and survivor activator factor enhancement (SAFE) signaling cascades in cardiomyocytes which promote cell survival by the expression of anti-apoptotic genes and inhibition of the opening of mitochondrial permeability transition pores. Clinical application of ischemic preconditioning involving targets in the RISK and SAFE signaling appears promising in the treatment of acute myocardial infarction; however, clinical trials have yet to demonstrate additional benefit to current therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bell, R. M., & Yellon, D. M. (2012). Conditioning the whole heart—not just the cardiomyocyte. Journal of Molecular and Cellular Cardiology, 53(1), 24–32. https://doi.org/10.1016/j.yjmcc.2012.04.001.

    Article  PubMed  CAS  Google Scholar 

  2. Ibanez, B., Heusch, G., Ovize, M., & Van De Werf, F. (2015). Evolving therapies for myocardial ischemia/reperfusion injury. Journal of the American College of Cardiology, 65(14), 1454–1471. https://doi.org/10.1016/j.jacc.2015.02.032.

    Article  PubMed  Google Scholar 

  3. Iliodromitis, E. K., Cohen, M. V., Dagres, N., Andreadou, I., Kremastinos, D. T., & Downey, J. M. (2015). What is wrong with cardiac conditioning? We may be shooting at moving targets. Journal of Cardiovascular Pharmacology and Therapeutics, 20(4), 357–369. https://doi.org/10.1177/1074248414566459.

    Article  PubMed  Google Scholar 

  4. Murry, C. E., Jennings, R. B., & Reimer, K. A. (1986). Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation, 74(5), 1124–1136. https://doi.org/10.1161/01.CIR.74.5.1124.

    Article  PubMed  CAS  Google Scholar 

  5. Jennings, R. B. (2013). Historical perspective on the pathology of myocardial ischemia/reperfusion injury. Circulation Research, 113(4), 428–438. https://doi.org/10.1161/CIRCRESAHA.113.300987.

    Article  PubMed  CAS  Google Scholar 

  6. Ibanez, B., Heusch, G., García-Dorado, D., & VYD, F. (2017). In V. Fuster, R. A. Harrington, & N. JEZ (Eds.), Molecular and cellular mechanisms of myocardial ischemia/reperfusion injury (14th ed.). New York, NY: McGraw-Hill http://accessmedicine.mhmedical.com.cuhsl.creighton.edu/content.aspx?bookid=2046&sectionid=155633823.

    Google Scholar 

  7. Heusch, G. (2013). Cardioprotection: chances and challenges of its translation to the clinic. Lancet, 381(9861), 166–175. https://doi.org/10.1016/S0140-6736(12)60916-7.

    Article  PubMed  Google Scholar 

  8. Balakumar, P., & Babbar, L. (2012). Preconditioning the hyperlipidemic myocardium: fact or fantasy? Cellular Signalling, 24(3), 589–595. https://doi.org/10.1016/j.cellsig.2011.11.003.

    Article  PubMed  CAS  Google Scholar 

  9. Bernink, F. J. P., Timmers, L., Beek, A. M., et al. (2014). Progression in attenuating myocardial reperfusion injury: an overview. International Journal of Cardiology, 170(3), 261–269. https://doi.org/10.1016/j.ijcard.2013.11.007.

    Article  PubMed  CAS  Google Scholar 

  10. Ibanez, B., MacAya, C., Sánchez-Brunete, V., et al. (2013). Effect of early metoprolol on infarct size in ST-segment-elevation myocardial infarction patients undergoing primary percutaneous coronary intervention: the effect of metoprolol in cardioprotection during an acute myocardial infarction (METOCARD-CNIC) tri. Circulation, 128(14), 1495–1503. https://doi.org/10.1161/CIRCULATIONAHA.113.003653.

    Article  PubMed  CAS  Google Scholar 

  11. Lee, S. M., Hutchinson, M., & Saint, D. A. (2016). The role of toll-like receptor 4 (TLR4) in cardiac ischaemic-reperfusion injury, cardioprotection and preconditioning. Clinical and Experimental Pharmacology & Physiology, 43(9), 864–871. https://doi.org/10.1111/1440-1681.12602.

    Article  CAS  Google Scholar 

  12. Miki, T., Yuda, S., Kouzu, H., & Miura, T. (2013). Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Failure Reviews, 18(2), 149–166. https://doi.org/10.1007/s10741-012-9313-3.

    Article  PubMed  Google Scholar 

  13. Heusch, G., & Rassaf, T. (2016). Time to give up on cardioprotection?: a critical appraisal of clinical studies on ischemic pre-, post-, and remote conditioning∗. Circulation Research, 119(5), 676–695. https://doi.org/10.1161/CIRCRESAHA.116.308736.

    Article  PubMed  CAS  Google Scholar 

  14. Le Page, S., & Prunier, F. (2015). Remote ischemic conditioning: current clinical perspectives. Journal of Cardiology, 66(2), 91–96. https://doi.org/10.1016/j.jjcc.2015.01.009.

    Article  PubMed  Google Scholar 

  15. Lorgis L, Gudjoncik A, Richard C, et al. Pre-infarction angina and outcomes in non-ST-segment elevation myocardial infarction: data from the RICO survey. Moretti C, ed. PLoS One 2012;7(12):e48513. doi:https://doi.org/10.1371/journal.pone.0048513.

  16. Lefer, D. J., & Bolli, R. (2012). Cardioprotection (Vol. 1). First Edit: Elsevier Inc.. https://doi.org/10.1016/B978-0-12-381510-1.00028-4.

    Book  Google Scholar 

  17. Kunst, G., & Klein, A. A. (2015). Peri-operative anaesthetic myocardial preconditioning and protection—cellular mechanisms and clinical relevance in cardiac anaesthesia. Anaesthesia, 70(4), 467–482. https://doi.org/10.1111/anae.12975.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Morley CGD, Stadtman TC. Studies on the fermentation of D-a-lysine. Purification and properties of an adenosine triphospate regulated B12-coenzyme-dependent D-a lysine mutase complex from Clostridium Sticklandii. Vol 9. Second Edi. Elsevier Inc.; 2011. doi:https://doi.org/10.1016/B978-1-4160-4927-2.00024-4.

  19. Heusch, G. (2015). Molecular basis of cardioprotection signal transduction in ischemic pre-, post-, and remote conditioning. Circulation Research, 116(4), 674–699. https://doi.org/10.1161/CIRCRESAHA.116.305348.

    Article  PubMed  CAS  Google Scholar 

  20. Hausenloy DJ, Garcia-Dorado D, Botker HE, et al. Novel targets and future strategies for acute cardioprotection: Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart. doi:https://doi.org/10.1093/cvr/cvx049.

  21. Hausenloy, D. J., Tsang, A., & Yellon, D. M. (2005). The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends in Cardiovascular Medicine, 15(2), 69–75. https://doi.org/10.1016/j.tcm.2005.03.001.

    Article  PubMed  CAS  Google Scholar 

  22. Ong, S. B., Dongworth, R. K., Cabrera-Fuentes, H. A., & Hausenloy, D. J. (2015). Role of the MPTP in conditioning the heart—translatability and mechanism. British Journal of Pharmacology, 172(8), 2074–2084. https://doi.org/10.1111/bph.13013.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Crompton M. The mitochondrial permeability transition pore and its role in cell death. The Biochemical Journal 1999;341:233–249. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1220352/pdf/10393078.pdf. Accessed 22 April 2018

  24. Yellon, D. M., Ackbarkhan, A. K., Balgobin, V., et al. (2015). Remote ischemic conditioning reduces myocardial infarct size in STEMI patients treated by thrombolysis. Journal of the American College of Cardiology, 65(25), 2764–2765. https://doi.org/10.1016/j.jacc.2015.02.082.

    Article  PubMed  Google Scholar 

  25. Swyers, T., Redford, D., & Larson, D. (2014). Volatile anesthetic-induced preconditioning. Perfusion, 29(1), 10–15. https://doi.org/10.1177/0267659113503975.

    Article  PubMed  CAS  Google Scholar 

  26. Rana, A., Goyal, N., Ahlawat, A., Jamwal, S., Reddy, B., & Sharma, S. (2015). Mechanisms involved in attenuated cardio-protective role of ischemic preconditioning in metabolic disorders. Perfusion, 30(2), 94–105. https://doi.org/10.1177/0267659114536760.

    Article  PubMed  CAS  Google Scholar 

  27. Moreira, J. B. N., Wohlwend, M., Alves, M. N. M., Wisløff, U., & Bye, A. (2015). A small molecule activator of AKT does not reduce ischemic injury of the rat heart. Journal of Translational Medicine, 13, 76. https://doi.org/10.1186/s12967-015-0444-x.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Somers SJ, Frias M, Lacerda L, Opie LH, Lecour S. Interplay between SAFE and RISK pathways in sphingosine-1-phosphate-induced cardioprotection. 2012:227–237. doi:https://doi.org/10.1007/s10557-012-6376-2.

  29. Lecour, S. (2009). Activation of the protective survivor activating factor enhancement (SAFE) pathway against reperfusion injury: does it go beyond the RISK pathway? Journal of Molecular and Cellular Cardiology, 47(1), 32–40. https://doi.org/10.1016/j.yjmcc.2009.03.019.

    Article  PubMed  CAS  Google Scholar 

  30. Roolvink, V., Ibáñez, B., Ottervanger, J. P., et al. (2016). Early intravenous beta-blockers in patients with ST-segment elevation myocardial infarction before primary percutaneous coronary intervention. Journal of the American College of Cardiology, 67(23), 2705–2715. https://doi.org/10.1016/j.jacc.2016.03.522.

    Article  PubMed  CAS  Google Scholar 

  31. Ravingerova, T., Ledvenyiova-Farkasova, V., Ferko, M., et al. (2015). Pleiotropic preconditioning-like cardioprotective effects of hypolipidemic drugs in acute ischemia-reperfusion in normal and hypertensive rats. Canadian Journal of Physiology and Pharmacology, 93(7), 495–503. https://doi.org/10.1139/cjpp-2014-0502.

    Article  PubMed  CAS  Google Scholar 

  32. Sakata, Y., Nakatani, D., Shimizu, M., et al. (2012). Oral treatment with nicorandil at discharge is associated with reduced mortality after acute myocardial infarction. Journal of Cardiology, 59(1), 14–21. https://doi.org/10.1016/j.jjcc.2011.08.001.

    Article  PubMed  Google Scholar 

  33. Lincoff, A. M., Roe, M., Aylward, P., et al. (2014). Inhibition of delta-protein kinase C by delcasertib as an adjunct to primary percutaneous coronary intervention for acute anterior ST-segment elevation myocardial infarction: results of the PROTECTION AMI randomized controlled trial. European Heart Journal, 35(37), 2516–2523. https://doi.org/10.1093/eurheartj/ehu177.

    Article  PubMed  CAS  Google Scholar 

  34. Schmidt, M. R., Redington, A., & Botker, H. E. (2015). Remote conditioning the heart overview: translatability and mechanism. British Journal of Pharmacology, 172(8), 1947–1960. https://doi.org/10.1111/bph.12933.

    Article  PubMed  CAS  Google Scholar 

  35. Mahaffey, K. W., Puma, J. A., Barbagelata, N. A., et al. (1999). Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo-controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. Journal of the American College of Cardiology., 34(6), 1711–1720. https://doi.org/10.1016/S0735-1097(99)00418-0.

    Article  PubMed  CAS  Google Scholar 

  36. Miki, T., Itoh, T., Sunaga, D., & Miura, T. (2012). Effects of diabetes on myocardial infarct size and cardioprotection by preconditioning and postconditioning. Cardiovascular Diabetology, 11(1), 67. https://doi.org/10.1186/1475-2840-11-67.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ross, A. M., Gibbons, R. J., Stone, G. W., Kloner, R. A., & Alexander, R. W. (2005). A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). Journal of the American College of Cardiology, 45(11), 1775–1780. https://doi.org/10.1016/j.jacc.2005.02.061.

    Article  PubMed  CAS  Google Scholar 

  38. Patel DJ, Purcell HJ, Fox KM. Cardioprotection by opening of the K ATP channel in unstable angina. Is this a clinical manifestation of myocardial preconditioning? Results of a randomized study with nicorandil. 1999:51–57.

  39. Ito, H., Taniyama, Y., Iwakura, K., et al. (1999). Intravenous nicorandil can preserve microvascular integrity and myocardial viability in patients with reperfused anterior wall myocardial infarction. Journal of the American College of Cardiology, 33(3), 654–660. https://doi.org/10.1016/S0735-1097(98)00604-4.

    Article  PubMed  CAS  Google Scholar 

  40. Quindry, J. C., & Exercise, H. K. L. (2013). Cardiac preconditioning against ischemia reperfusion. Current Cardiology Reviews, 9(3), 220–229. https://doi.org/10.2174/1573403x113099990033.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Pagel, P. S. (2013). Myocardial protection by volatile anesthetics in patients undergoing cardiac surgery: a critical review of the laboratory and clinical evidence. Journal of Cardiothoracic and Vascular Anesthesia, 27(5), 972–982. https://doi.org/10.1053/j.jvca.2012.10.011.

    Article  PubMed  Google Scholar 

  42. Moscarelli, M., Punjabi, P. P., Miroslav, G. I., Del Sarto, P., Fiorentino, F., & Angelini, G. D. (2015). Myocardial conditioning techniques in off-pump coronary artery bypass grafting. Journal of Cardiothoracic Surgery, 10, 7. https://doi.org/10.1186/s13019-014-0204-7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sivaraman, V., Pickard, J. M. J., & Hausenloy, D. J. (2015). Remote ischaemic conditioning: cardiac protection from afar. Anaesthesia, 70(6), 732–748. https://doi.org/10.1111/anae.12973.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Heusch, G., Bøtker, H. E., Przyklenk, K., Redington, A., & Yellon, D. (2015). Remote ischemic conditioning. Journal of the American College of Cardiology, 65(2), 177–195. https://doi.org/10.1016/j.jacc.2014.10.031.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Le Page, S., Bejan-Angoulvant, T., Angoulvant, D., & Prunier, F. (2015). Remote ischemic conditioning and cardioprotection: a systematic review and meta-analysis of randomized clinical trials. Basic Research in Cardiology, 110(2). https://doi.org/10.1007/s00395-015-0467-8.

  46. Cung, T.-T., Morel, O., Cayla, G., et al. (2015). Cyclosporine before PCI in patients with acute myocardial infarction. The New England Journal of Medicine, 373(11), 1021–1031. https://doi.org/10.1056/NEJMoa1505489.

    Article  PubMed  CAS  Google Scholar 

  47. Piot, C., Croisille, P., Staat, P., et al. (2008). Effect of cyclosporine on reperfusion injury in acute myocardial infarction. The New England Journal of Medicine, 359(5), 473–481. https://doi.org/10.1056/NEJMoa071142.

    Article  PubMed  CAS  Google Scholar 

  48. Przyklenk, K. (2015). Ischaemic conditioning: pitfalls on the path to clinical translation. British Journal of Pharmacology, 172(8), 1961–1973. https://doi.org/10.1111/bph.13064.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Deng, Q.-W., Xia, Z.-Q., Qiu, Y.-X., et al. (2015). Clinical benefits of aortic cross-clamping versus limb remote ischemic preconditioning in coronary artery bypass grafting with cardiopulmonary bypass: a meta-analysis of randomized controlled trials. The Journal of Surgical Research, 193(1), 52–68. https://doi.org/10.1016/j.jss.2014.10.007.

    Article  PubMed  Google Scholar 

  50. Williams, R. P., Manou-Stathopoulou, V., Redwood, S. R., & Marber, M. S. (2014). Republished: “Warm-up angina”: harnessing the benefits of exercise and myocardial ischaemia. Postgraduate Medical Journal, 90(1069), 648–656. https://doi.org/10.1136/postgradmedj-2013-304187rep.

    Article  PubMed  Google Scholar 

  51. Okazaki, Y., Kodama, K., Sato, H., et al. (1993). Attenuation of increased regional myocardial oxygen consumption during exercise as a major cause of warm-up phenomenon. Journal of the American College of Cardiology, 21(7), 1597–1604. https://doi.org/10.1016/0735-1097(93)90374-A.

    Article  PubMed  CAS  Google Scholar 

  52. Deutsch, E., Berger, M., Kussmaul, W. G., Hirshfeld, J. W., Herrmann, H. C., & Laskey, W. K. (1990). Adaptation to ischemia during percutaneous transluminal coronary angioplasty. Clinical, hemodynamic, and metabolic features. Circulation, 82(6), 2044–2051. https://doi.org/10.1161/01.CIR.82.6.2044.

    Article  PubMed  CAS  Google Scholar 

  53. Yogaratnam, J. Z., Laden, G., Guvendik, L., Cowen, M., Cale, A., & Griffin, S. (2010). Hyperbaric oxygen preconditioning improves myocardial function, reduces length of intensive care stay, and limits complications post coronary artery bypass graft surgery. Cardiovasc Revascularization Med., 11(1), 8–19. https://doi.org/10.1016/j.carrev.2009.03.004.

    Article  Google Scholar 

  54. Allen MW, Golembe E, Gorenstein S, Butler GJ. Protective effects of hyperbaric oxygen therapy (HBO2) in cardiac care—a proposal to conduct a study into the effects of hyperbaric pre-conditioning in elective coronary artery bypass graft surgery (CABG). Undersea & Hyperbaric Medicine 2015;42(2):107–114. http://www.ncbi.nlm.nih.gov/pubmed/26094285.

  55. Na, H. S., Kim, Y. I., Yoon, Y. W., Han, H. C., Nahm, S. H., & Hong, S. K. (1996). Ventricular premature beat—driven intermittent restoration of coronary blood flow reduces the incidence of reperfusion-induced ventricular fibrillation in a cat model of regional ischemia. American Heart Journal, 132(1, 78–83. https://doi.org/10.1016/S0002-8703(96)90393-2.

    Article  Google Scholar 

  56. Lucas, D. N., & Yentis, S. M. (2015). Unsettled weather and the end for thiopental? Obstetric general anaesthesia after the NAP5 and MBRRACE-UK reports. Anaesthesia, 70(4), 375–379. https://doi.org/10.1111/anae.13034.

    Article  PubMed  CAS  Google Scholar 

  57. Ovize, M., Thibault, H., & Przyklenk, K. (2013). Myocardial conditioning: opportunities for clinical translation. Circulation Research, 113(4), 439–450. https://doi.org/10.1161/CIRCRESAHA.113.300764.

    Article  PubMed  CAS  Google Scholar 

  58. Elbadawi, A., Ha, L. D., Abuzaid, A. S., Crimi, G., & Azzouz, M. S. (2016). Meta-analysis of randomized trials on remote ischemic conditioning during primary percutaneous coronary intervention in patients with ST-segment elevation myocardial infarction. The American Journal of Cardiology, 119(6), 832–838. https://doi.org/10.1016/j.amjcard.2016.11.036.

    Article  PubMed  Google Scholar 

  59. Staat, P., Rioufol, G., Piot, C., et al. (2005). Postconditioning the human heart. Circulation, 112(14), 2143–2148. https://doi.org/10.1161/CIRCULATIONAHA.105.558122.

    Article  PubMed  Google Scholar 

  60. Ravingerova, T., Farkasova, V., Griecsova, L., et al. (2016). Remote preconditioning as a novel “ conditioning” approach to repair the broken heart: potential mechanisms and clinical applications. Physiological Research, 65, S55–S64.

    PubMed  CAS  Google Scholar 

  61. Przyklenk, K., Bauer, B., Ovize, M., Kloner, R. A., & Whittaker, P. (1993). Regional ischemic “preconditioning” protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation, 87(3), 893–899. https://doi.org/10.1161/01.cir.87.3.893.

    Article  PubMed  CAS  Google Scholar 

  62. Kharbanda, R. K., Mortensen, U. M., White, P. A., et al. (2002). Transient limb ischemia induces remote ischemic preconditioning in vivo. Circulation, 106(23), 2881–2883. https://doi.org/10.1161/01.CIR.0000043806.51912.9B.

    Article  PubMed  CAS  Google Scholar 

  63. Zografos, T. A., Katritsis, G. D., Tsiafoutis, I., Bourboulis, N., Katsivas, A., & Katritsis, D. G. (2014). Effect of one-cycle remote ischemic preconditioning to reduce myocardial injury during percutaneous coronary intervention. The American Journal of Cardiology, 113(12), 2013–2017. https://doi.org/10.1016/j.amjcard.2014.03.043.

    Article  PubMed  Google Scholar 

  64. Thielmann, M., Kottenberg, E., Kleinbongard, P., et al. (2013). Cardioprotective and prognostic effects of remote ischaemic preconditioning in patients undergoing coronary artery bypass surgery: a single-centre randomised, double-blind, controlled trial. Lancet, 382(9892), 597–604. https://doi.org/10.1016/S0140-6736(13)61450-6.

    Article  PubMed  Google Scholar 

  65. Manchurov, V., Ryazankina, N., Khmara, T., et al. (2014). Remote ischemic preconditioning and endothelial function in patients with acute myocardial infarction and primary PCI. The American Journal of Medicine, 127(7), 670–673. https://doi.org/10.1016/j.amjmed.2014.02.012.

    Article  PubMed  Google Scholar 

  66. Mewton, N., & Ovize, M. (2013). Remote preconditioning and all-cause mortality. Lancet, 382(9892), 579–580. https://doi.org/10.1016/S0140-6736(13)61607-4.

    Article  PubMed  Google Scholar 

  67. Yang H, Tracey KJ. HHS Public Access. 2015;1799(0):149–156. doi:https://doi.org/10.1016/j.bbagrm.2009.11.019.Targeting.

  68. Pickard, J. M. J., Bøtker, H. E., Crimi, G., et al. (2015). Remote ischemic conditioning: from experimental observation to clinical application: report from the 8th Biennial Hatter Cardiovascular Institute Workshop. Basic Research in Cardiology, 110(1). https://doi.org/10.1007/s00395-014-0453-6.

  69. Jensen, R. V., Støttrup, N. B., Kristiansen, S. B., & Bøtker, H. E. (2012). Release of a humoral circulating cardioprotective factor by remote ischemic preconditioning is dependent on preserved neural pathways in diabetic patients. Basic Research in Cardiology, 107(5), 1–9. https://doi.org/10.1007/s00395-012-0285-1.

    Article  Google Scholar 

  70. Gill, R., Kuriakose, R., Gertz, Z. M., Salloum, F. N., Xi, L., & Kukreja, R. C. (2015). Remote ischemic preconditioning for myocardial protection: update on mechanisms and clinical relevance. Molecular and Cellular Biochemistry, 402(1–2), 41–49. https://doi.org/10.1007/s11010-014-2312-z.

    Article  PubMed  CAS  Google Scholar 

  71. D’Ascenzo, F., Cavallero, E., Moretti, C., et al. (2012). Remote ischaemic preconditioning in coronary artery bypass surgery: a meta-analysis. Heart, 98(17), 1267–1271. https://doi.org/10.1136/heartjnl-2011-301551.

    Article  PubMed  Google Scholar 

  72. Günaydin, B., Cakici, I., Soncul, H., et al. (2000). Does remote organ ischaemia trigger cardiac preconditioning during coronary artery surgery? Pharmacological Research, 41(4), 493–496. https://doi.org/10.1006/phrs.1999.0611.

    Article  PubMed  Google Scholar 

  73. Cheung, M. M. H., Kharbanda, R. K., Konstantinov, I. E., et al. (2006). Randomized controlled trial of the effects of remote ischemic preconditioning on children undergoing cardiac surgery: first clinical application in humans. Journal of the American College of Cardiology., 47(11), 2277–2282. https://doi.org/10.1016/j.jacc.2006.01.066.

    Article  PubMed  Google Scholar 

  74. Candilio, L., Malik, A., Ariti, C., et al. (2015). Effect of remote ischaemic preconditioning on clinical outcomes in patients undergoing cardiac bypass surgery: a randomised controlled clinical trial. Heart, 101(3), 185–192. https://doi.org/10.1136/heartjnl-2014-306178.

    Article  PubMed  Google Scholar 

  75. Zimmerman, R. F., Ezeanuna, P. U., Kane, J. C., et al. (2011). Ischemic preconditioning at a remote site prevents acute kidney injury in patients following cardiac surgery. Kidney International, 80(8), 861–867. https://doi.org/10.1038/ki.2011.156.

    Article  PubMed  Google Scholar 

  76. Healy, D. A., Khan, W. A., Wong, C. S., et al. (2014). Remote preconditioning and major clinical complications following adult cardiovascular surgery: systematic review and meta-analysis. International Journal of Cardiology, 176(1), 20–31. https://doi.org/10.1016/j.ijcard.2014.06.018.

    Article  PubMed  CAS  Google Scholar 

  77. Yang, L., Wang, G., Du, Y., Ji, B., & Zheng, Z. (2014). Remote ischemic preconditioning reduces cardiac troponin i release in cardiac surgery: a meta-analysis. Journal of Cardiothoracic and Vascular Anesthesia, 28(3), 682–689. https://doi.org/10.1053/j.jvca.2013.05.035.

    Article  PubMed  CAS  Google Scholar 

  78. Davies, W. R., Brown, A. J., Watson, W., et al. (2013). Remote ischemic preconditioning improves outcome at 6 years after elective percutaneous coronary intervention: the CRISP stent trial long-term follow-up. Circulation. Cardiovascular Interventions, 6(3), 246–251. https://doi.org/10.1161/CIRCINTERVENTIONS.112.000184.

    Article  PubMed  CAS  Google Scholar 

  79. Lanza, G. A., Stazi, A., Villano, A., et al. (2016). Effect of remote ischemic preconditioning on platelet activation induced by coronary procedures. The American Journal of Cardiology, 117(3), 359–365. https://doi.org/10.1016/j.amjcard.2015.10.056.

    Article  PubMed  CAS  Google Scholar 

  80. Hausenloy, D. J., Candilio, L., Evans, R., et al. (2015). Remote ischemic preconditioning and outcomes of cardiac surgery. The New England Journal of Medicine, 373(15), 1408–1417. https://doi.org/10.1056/NEJMoa1413534.

    Article  PubMed  CAS  Google Scholar 

  81. Meybohm, P., Bein, B., Brosteanu, O., et al. (2015). A multicenter trial of remote ischemic preconditioning for heart surgery. The New England Journal of Medicine, 373(15), 1397–1407. https://doi.org/10.1056/NEJMoa1413579.

    Article  PubMed  CAS  Google Scholar 

  82. Bauters, C., Lamblin, N., Fadden, E. P. M., Van Belle, E., Millaire, A., de Groote, P. (2003). Influence of diabetes mellitus on heart failure risk and outcome. Cardiovasc Diabetol, 16, 1–16.

    Article  Google Scholar 

  83. Haffner, S. M. (2006). Relationship of metabolic risk factors and development of cardiovascular disease and diabetes. Obesity, 14, 121S–127S. https://doi.org/10.1038/oby.2006.291.

    Article  PubMed  Google Scholar 

  84. Tsang, A., Hausenloy, D. J., Mocanu, M. M., Carr, R. D., & Yellon, D. M. (2005). Preconditioning the diabetic heart. Diabetes, 54(8), 2360–2364. https://doi.org/10.2337/diabetes.54.8.2360.

    Article  PubMed  CAS  Google Scholar 

  85. Tamareille, S., Ghaboura, N., Treguer, F., et al. (2009). Myocardial reperfusion injury management: erythropoietin compared with postconditioning. American Journal of Physiology. Heart and Circulatory Physiology, 297(6), H2035–H2043. https://doi.org/10.1152/ajpheart.00472.2009.

    Article  PubMed  CAS  Google Scholar 

  86. Andreadou, I., Iliodromitis, E. K., Lazou, A., et al. (2017). Effect of hypercholesterolaemia on myocardial function, ischaemia-reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. British Journal of Pharmacology, 174(12), 1555–1569. https://doi.org/10.1111/bph.13704.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Ferdinandy, P., Hausenloy, D. J., Heusch, G., Baxter, G. F., & Schulz, R. (2014). Interaction of risk factors, comorbidities, and comedications with ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning. Pharmacol Rev Pharmacol Rev., 66, 1142–1174. https://doi.org/10.1124/pr.113.008300.

    Article  PubMed  CAS  Google Scholar 

  88. Schulz, R., Görge, P. M., Görbe, A., Ferdinandy, P., Lampe, P. D., & Leybaert, L. (2015). Connexin 43 is an emerging therapeutic target in ischemia/reperfusion injury, cardioprotection and neuroprotection. Pharmacology & Therapeutics, 153, 90–106. https://doi.org/10.1016/j.pharmthera.2015.06.005.

    Article  CAS  Google Scholar 

  89. Pryds, K., Terkelsen, C. J., Sloth, A. D., et al. (2016). Remote ischaemic conditioning and healthcare system delay in patients with ST-segment elevation myocardial infarction. Heart, 102(13), 1023–1028. https://doi.org/10.1136/heartjnl-2015-308980.

    Article  PubMed  Google Scholar 

  90. Payne, R. E., Aldwinckle, J., Storrow, J., Kong, R. S., & Lewis, M. E. (2015). RIPC remains a promising technique for protection of the myocardium during open cardiac surgery: a meta-analysis and systematic review. The Heart Surgery Forum, 18(2), 77–84. https://doi.org/10.1532/hsf.1251.

    Article  Google Scholar 

Download references

Funding

This work was supported by research grants R01 HL112597, R01 HL116042, and R01 HL120659 to DK Agrawal from the National Heart, Lung and Blood Institute, National Institutes of Health, USA. The content of this review article is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra K. Agrawal.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Animals/Human Subjects

This article does not contain any studies with human participants or animals performed by any of the authors. Findings were gathered from the published articles in the literature.

Additional information

The contributing editor for this article was Junjie Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosenberg, J.H., Werner, J.H., Moulton, M.J. et al. Current Modalities and Mechanisms Underlying Cardioprotection by Ischemic Conditioning. J. of Cardiovasc. Trans. Res. 11, 292–307 (2018). https://doi.org/10.1007/s12265-018-9813-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-018-9813-1

Keywords

Navigation