Skip to main content
Log in

N-acetylcysteine Plus Deferoxamine Improves Cardiac Function in Wistar Rats After Non-reperfused Acute Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The antioxidant N-acetycysteine can turn into a prooxidant molecule in presence of iron ions. Thus, our goal was to test if the association of N-acetylcysteine (NAC) and an iron chelator (deferoxamine—DFX) in a rodent model of acute myocardial infarction (AMI) improves cardiac function. Male Wistar rats were subjected to a SHAM surgery or AMI. The animals were randomized: vehicle, NAC (25 mg/kg for 28 days), DFX (40 mg/kg for 7 days), or NAC plus DFX (NAC plus DFX, respectively). Animals were killed 28 days after the AMI. Animals treated with NAC/DFX showed an increase in left ventricular ejection fraction at 28 days when compared with vehicle group (45.2 ± 10.9 % vs. 34.7 ± 8.7 %, p = 0.03). Antioxidant effect of NAC/DFX treatment decreased 4-hydroxynonenal when compared to AMI group (p = 0.06). In conclusion, we showed beneficial effect of NAC/DFX association in improving left ventricle function in an experimental AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMI:

Acute myocardial infarction

DFX:

Deferoxamine

EF:

Ejection fraction

FS:

Fractional shortening

HNE:

Hydroxynonenal

LV:

Left ventricular

LVDD:

Left ventricular diastolic diameter

LVSD:

Left ventricular systolic diameter

NAC:

N-acetylcysteine

PE:

Perimeter of the endocardium

ROS:

Reactive oxygen species

References

  1. Baykan, M., Celik, U., Orem, A., Malkoc, M., Erdol, C., Baykan, E. C., et al. (2001). Iron status and its relationship with lipid peroxidation in patients with acute myocardial infarction. Acta Cardiologica, 56(5), 277–281. doi:10.2143/AC.56.5.2005687.

    Article  CAS  PubMed  Google Scholar 

  2. Xu, J., Zhao, J., Evan, G., Xiao, C., Cheng, Y., & Xiao, J. (2012). Circulating microRNAs: novel biomarkers for cardiovascular diseases. Journal of Molecular Medicine (Berl), 90(8), 865–875. doi:10.1007/s00109-011-0840-5.

    Article  CAS  Google Scholar 

  3. Khaper, N., Bryan, S., Dhingra, S., Singal, R., Bajaj, A., Pathak, C. M., et al. (2010). Targeting the vicious inflammation-oxidative stress cycle for the management of heart failure. Antioxidants and Redox Signaling, 13(7), 1033–1049. doi:10.1089/ars.2009.2930.

    Article  CAS  PubMed  Google Scholar 

  4. Lombardi, R., Rodriguez, G., Chen, S. N., Ripplinger, C. M., Li, W., Chen, J., et al. (2009). Resolution of established cardiac hypertrophy and fibrosis and prevention of systolic dysfunction in a transgenic rabbit model of human cardiomyopathy through thiol-sensitive mechanisms. Circulation, 119(10), 1398–1407. doi:10.1161/CIRCULATIONAHA.108.790501.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bonow, M., Douglas L. Mann, MD, Facc, Douglas P. Zipes, MD and Peter Libby, MD (2011). Braunwald’s heart disease—A textbook of cardiovascular medicine. 9th ed.

  6. Samuni, Y., Goldstein, S., Dean, O. M., & Berk, M. (2013). The chemistry and biological activities of N-acetylcysteine. Biochimica et Biophysica Acta, 1830(8), 4117–4129. doi:10.1016/j.bbagen.2013.04.016.

    Article  CAS  PubMed  Google Scholar 

  7. Sochman, J. (2002). N-acetylcysteine in acute cardiology: 10 years later: what do we know and what would we like to know?! Journal of the American College of Cardiology, 39(9), 1422–1428. doi:10.1016/S0735-1097(02)01797-7.

    Article  CAS  PubMed  Google Scholar 

  8. Peker, O., Peker, T., Erdogan, D., Ozaydin, M., Kapan, S., Sutcu, R., et al. (2008). Effects of intravenous N-acetylcysteine on periprocedural myocardial injury after on-pump coronary artery by-pass grafting. The Journal of Cardiovascular Surgery, 49(4), 527–531.

    CAS  PubMed  Google Scholar 

  9. Braunersreuther, V., & Jaquet, V. (2012). Reactive oxygen species in myocardial reperfusion injury: from physiopathology to therapeutic approaches. Current Pharmaceutical Biotechnology, 13(1), 97–114. doi:10.2174/138920112798868782.

    Article  CAS  PubMed  Google Scholar 

  10. Sagrista, M. L., Garcia, A. E., Africa De Madariaga, M., & Mora, M. (2002). Antioxidant and pro-oxidant effect of the thiolic compounds N-acetyl-L-cysteine and glutathione against free radical-induced lipid peroxidation. Free Radical Research, 36(3), 329–340. doi:10.1080/10715760290019354.

    Article  CAS  PubMed  Google Scholar 

  11. Sprong, R. C., Winkelhuyzen-Janssen, A. M., Aarsman, C. J., van Oirschot, J. F., van der Bruggen, T., & van Asbeck, B. S. (1998). Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. American Journal of Respiratory and Critical Care Medicine, 157(4 Pt 1), 1283–1293. doi:10.1164/ajrccm.157.4.9508063.

    Article  CAS  PubMed  Google Scholar 

  12. Chopra, K., Singh, M., Kaul, N., Andrabi, K. I., & Ganguly, N. K. (1992). Decrease of myocardial infarct size with desferrioxamine: possible role of oxygen free radicals in its ameliorative effect. Molecular and Cellular Biochemistry, 113(1), 71–76. doi:10.1007/BF00230887.

    Article  CAS  PubMed  Google Scholar 

  13. Yang, T., Brittenham, G. M., Dong, W. Q., Levy, M. N., Obejero-Paz, C. A., Kuryshev, Y. A., et al. (2003). Deferoxamine prevents cardiac hypertrophy and failure in the gerbil model of iron-induced cardiomyopathy. Journal of Laboratory and Clinical Medicine, 142(5), 332–340. doi:10.1016/S0022-2143(03)00135-5.

    Article  CAS  PubMed  Google Scholar 

  14. Chan, W., Taylor, A. J., Ellims, A. H., Lefkovits, L., Wong, C., Kingwell, B. A., et al. (2012). Effect of iron chelation on myocardial infarct size and oxidative stress in ST-elevation-myocardial infarction. Circulation. Cardiovascular Interventions, 5(2), 270–278. doi:10.1161/CIRCINTERVENTIONS.111.966226.

    Article  CAS  PubMed  Google Scholar 

  15. Gutteridge, J. M., Richmond, R., & Halliwell, B. (1979). Inhibition of the iron-catalysed formation of hydroxyl radicals from superoxide and of lipid peroxidation by desferrioxamine. Biochemical Journal, 184(2), 469–472.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Fraga, C. M., Tomasi, C. D., Biff, D., Topanotti, M. F., Felisberto, F., Vuolo, F., et al. (2012). The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial. Journal of Clinical Pharmacology, 52(9), 1365–1372. doi:10.1177/0091270011418657.

    Article  CAS  PubMed  Google Scholar 

  17. Ritter, C., Andrades, M. E., Reinke, A., Menna-Barreto, S., Moreira, J. C., & Dal-Pizzol, F. (2004). Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Critical Care Medicine, 32(2), 342–349. doi:10.1097/01.CCM.0000109454.13145.CA.

    Article  CAS  PubMed  Google Scholar 

  18. Ritter, C., da Cunha, A. A., Echer, I. C., Andrades, M., Reinke, A., Lucchiari, N., et al. (2006). Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Critical Care Medicine, 34(2), 471–477. doi:10.1097/01.CCM.0000199069.19193.89.

    Article  CAS  PubMed  Google Scholar 

  19. Kilkenny, C., Browne, W. J., Cuthill, I. C., Emerson, M., & Altman, D. G. (2010). Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biology, 8(6), e1000412. doi:10.1371/journal.pbio.1000412.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Pfeffer, M. A., Pfeffer, J. M., Fishbein, M. C., Fletcher, P. J., Spadaro, J., Kloner, R. A., et al. (1979). Myocardial infarct size and ventricular function in rats. Circulation Research, 44(4), 503–512. doi:10.1161/01.RES.44.4.503.

    Article  CAS  PubMed  Google Scholar 

  21. Tavares, A. M., da Rosa Araujo, A. S., Baldo, G., Matte, U., Khaper, N., Bello-Klein, A., et al. (2010). Bone marrow derived cells decrease inflammation but not oxidative stress in an experimental model of acute myocardial infarction. Life Sciences, 87(23–26), 699–706. doi:10.1016/j.lfs.2010.10.008.

    Article  CAS  PubMed  Google Scholar 

  22. Vietta, G. G., Andrades, M. E., Dall'alba, R., Schneider, S. I., Frick, L. M., Matte, U., et al. (2013). Early use of cardiac troponin-I and echocardiography imaging for prediction of myocardial infarction size in Wistar rats. Life Sciences, 93(4), 139–144. doi:10.1016/j.lfs.2013.05.026.

    Article  CAS  PubMed  Google Scholar 

  23. O'Brien, P. J., Smith, D. E., Knechtel, T. J., Marchak, M. A., Pruimboom-Brees, I., Brees, D. J., et al. (2006). Cardiac troponin I is a sensitive, specific biomarker of cardiac injury in laboratory animals. Laboratory Animals, 40(2), 153–171. doi:10.1258/002367706776319042.

    Article  PubMed  Google Scholar 

  24. Artiss, J. D., Vinogradov, S., & Zak, B. (1981). Spectrophotometric study of several sensitive reagents for serum iron. Clinical Biochemistry, 14(6), 311–315.

    Article  CAS  PubMed  Google Scholar 

  25. Vandenbossche, J. L., Kramer, B. L., Massie, B. M., Morris, D. L., & Karliner, J. S. (1984). Two-dimensional echocardiographic evaluation of the size, function and shape of the left ventricle in chronic aortic regurgitation: comparison with radionuclide angiography. Journal of the American College of Cardiology, 4(6), 1195–1206.

    Article  CAS  PubMed  Google Scholar 

  26. Peron, A. P., Saraiva, R. M., Antonio, E. L., & Tucci, P. J. (2006). Mechanical function is normal in remanent myocardium during the healing period of myocardial infarction—despite congestive heart failure. Arquivos Brasileiros de Cardiologia, 86(2), 105–112. doi:10.1590/S0066-782X2006000200005.

    Article  PubMed  Google Scholar 

  27. Neto, E. P., Fuhrich, D. G., Carson, D. D., Engel, B. J., & Savaris, R. F. (2014). Elafin expression in mucosa of fallopian tubes is altered by hydrosalpinx. Reproductive Sciences, 21(3), 401–407. doi:10.1177/1933719113497291.

    Article  PubMed  Google Scholar 

  28. Soszynski, M., & Bartosz, G. (1997). Decrease in accessible thiols as an index of oxidative damage to membrane proteins. Free Radical Biology and Medicine, 23(3), 463–469. doi:10.1016/S0891-5849(97)00117-2.

    Article  CAS  PubMed  Google Scholar 

  29. Levine, R. L., Williams, J. A., Stadtman, E. R., & Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Methods in Enzymology, 233, 346–357. doi:10.1016/S0076-6879(94)33040-9.

    Article  CAS  PubMed  Google Scholar 

  30. Meyer, M., Bell, S. P., Chen, Z., Nyotowidjojo, I., Lachapelle, R. R., Christian, T. F., et al. (2013). High dose intracoronary N-acetylcysteine in a porcine model of ST-elevation myocardial infarction. Journal of Thrombosis and Thrombolysis, 36(4), 433–441. doi:10.1007/s11239-013-0901-4.

    Article  CAS  PubMed  Google Scholar 

  31. Talasaz, A. H., Khalili, H., Jenab, Y., Salarifar, M., Broumand, M. A., & Darabi, F. (2013). N-Acetylcysteine effects on transforming growth factor-beta and tumor necrosis factor-alpha serum levels as pro-fibrotic and inflammatory biomarkers in patients following ST-segment elevation myocardial infarction. Drugs R D, 13(3), 199–205. doi:10.1007/s40268-013-0025-5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Ritter, C., Reinke, A., Andrades, M., Martins, M. R., Rocha, J., Menna-Barreto, S., et al. (2004). Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Critical Care Medicine, 32(10), 2079–2083. doi:10.1097/01.CCM.0000142699.54266.D9.

    Article  CAS  PubMed  Google Scholar 

  33. Roodenburg, A. J. C., West, C. E., & Beynen, A. C. (1996). Iron status in female rats with different, stable plasma retinol concentrations. Nutrition Research, 16(7), 1199–1209. doi:10.1016/0271-5317(96)00124-8.

    Article  CAS  Google Scholar 

  34. Steen, D. L., Cannon, C. P., Lele, S. S., Rajapurkar, M. M., Mukhopadhyay, B., Scirica, B. M., et al. (2013). Prognostic evaluation of catalytic iron in patients with acute coronary syndromes. Clinical Cardiology, 36(3), 139–145. doi:10.1002/clc.22089.

    Article  PubMed  Google Scholar 

  35. Lele, S., Shah, S., McCullough, P. A., & Rajapurkar, M. (2009). Serum catalytic iron as a novel biomarker of vascular injury in acute coronary syndromes. EuroIntervention, 5(3), 336–342. doi:10.4103/0971-4065.116293.

    Article  PubMed  Google Scholar 

  36. Lee, T. M., Lai, P. Y., & Chang, N. C. (2010). Effect of N-acetylcysteine on sympathetic hyperinnervation in post-infarcted rat hearts. Cardiovascular Research, 85(1), 137–146. doi:10.1093/cvr/cvp286.

    Article  CAS  PubMed  Google Scholar 

  37. Casasco, A., Calligaro, A., Casasco, M., Tateo, S., Icaro Cornaglia, A., Reguzzoni, M., et al. (1997). Immunohistochemical localization of lipoperoxidation products in normal human placenta. Placenta, 18(4), 249–253. doi:10.1016/S0143-4004(97)80058-6.

    Article  CAS  PubMed  Google Scholar 

  38. Zima, A. V., & Blatter, L. A. (2006). Redox regulation of cardiac calcium channels and transporters. Cardiovascular Research, 71(2), 310–321. doi:10.1016/j.cardiores.2006.02.019.

    Article  CAS  PubMed  Google Scholar 

  39. Tsutsui, H. (2001). Oxidative stress in heart failure: the role of mitochondria. Internal Medicine, 40(12), 1177–1182. doi:10.2169/internalmedicine.40.1177.

    Article  CAS  PubMed  Google Scholar 

  40. Vandervelde, S., van Amerongen, M. J., Tio, R. A., Petersen, A. H., van Luyn, M. J., & Harmsen, M. C. (2006). Increased inflammatory response and neovascularization in reperfused vs. non-reperfused murine myocardial infarction. Cardiovascular Pathology, 15(2), 83–90. doi:10.1016/j.carpath.2005.10.006.

    Article  PubMed  Google Scholar 

  41. Fraga, C. M., Tomasi, C. D., Biff, D., Topanotti, M. F., Felisberto, F., Vuolo, F., et al. (2011). The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial. Journal of Clinical Pharmacology. doi:10.1177/0091270011418657.

    PubMed  Google Scholar 

Download references

Funding

This work was supported in part by grants from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Secretaria de Ciência e Tecnologia da Fundação de Amparo a Pesquisa do Estado do Rio Grande do Sul (FAPERGS # 11/1970-3), and Fundo de Incentivo à Pesquisa e Eventos do Hospital de Clínicas de Porto Alegre (FIPE-HCPA).

Animal Study

No human studies were carried out by the authors for this article.

All procedures followed during this investigation are in accordance with the Guide for the Care and Use of Laboratory Animals published by the US National Institutes of Health (NIH Publication No. 85-23, revised 1996), and the experimental protocol was approved by the Ethics Committee of the Hospital de Clinicas de Porto Alegre (CEUA) by the number 110202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Andrades.

Additional information

Associate Editor Paul J. R. Barton oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Phaelante, A., Rohde, L.E., Lopes, A. et al. N-acetylcysteine Plus Deferoxamine Improves Cardiac Function in Wistar Rats After Non-reperfused Acute Myocardial Infarction. J. of Cardiovasc. Trans. Res. 8, 328–337 (2015). https://doi.org/10.1007/s12265-015-9633-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-015-9633-5

Keywords

Navigation