Skip to main content
Log in

Impact of Mild Hypothermia on Platelet Responsiveness to Aspirin and Clopidogrel: an In Vitro Pharmacodynamic Investigation

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The combination of percutaneous coronary intervention (PCI) and therapeutic hypothermia in comatose patients after cardiac arrest due to an acute coronary syndrome has been reported to be safe and effective. However, recent investigations suggest that hypothermia may be associated with impaired response to clopidogrel and greater risk of thrombotic complications after PCI. This investigation aimed to evaluate the effect of hypothermia on the pharmacodynamic response of aspirin and clopidogrel in patients (n = 20) with ST elevation myocardial infarction undergoing primary PCI. Higher platelet reactivity (ADP stimulus) was observed in samples incubated at 33 °C compared with those at 37 °C (multiple electrode aggregometry, 235.2 ± 31.4 AU×min vs. 181.9 ± 30.2 AU×min, p < 0.001; VerifyNow P2Y12, 172.9 ± 20.3 PRU vs. 151.0 ± 19.3 PRU, p = 0.004). Numerically greater rates of clopidogrel poor responsiveness were also observed at 33 °C. No differences were seen in aspirin responsiveness. In conclusion, mild hypothermia was associated with reduced clopidogrel-mediated platelet inhibition with no impact on aspirin effects.

Clinical relevance: Mild therapeutic hypothermia is associated with impaired response to clopidogrel therapy, which might contribute to increase the risk of thrombotic events in ACS comatose patients undergoing PCI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peberdy, M. A., Callaway, C. W., Neumar, R. W., et al. (2010). Part 9: post-cardiac arrest care: 2010 American Heart Association Guidelines for Cardiopulmonary Resuscitation and Emergency Cardiovascular Care. Circulation, 122(18 Suppl 3), S768–S786. doi:10.1161/CIRCULATIONAHA.110.971002.

    Article  PubMed  Google Scholar 

  2. Hypothermia after Cardiac Arrest Study Group. (2002). Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. New England Journal of Medicine, 346, 549–556. doi:10.1056/NEJMoa012689.

    Article  Google Scholar 

  3. Bernard, S. A., Gray, T. W., Buist, M. D., et al. (2002). Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. New England Journal of Medicine, 346, 557–563.

    Article  PubMed  Google Scholar 

  4. Spaulding, C. M., Joly, L. M., Rosenberg, A., et al. (1997). Immediate coronary angiography in survivors of out-of-hospital cardiac arrest. New England Journal of Medicine, 336, 1629–1633. doi:10.1056/NEJM199706053362302.

    Article  CAS  PubMed  Google Scholar 

  5. Anyfantakis, Z. A., Baron, G., Aubry, P., et al. (2009). Acute coronary angiographic findings in survivors of out-of-hospital cardiac arrest. American Heart Journal, 157, 312–318. doi:10.1016/j.ahj.2008.09.016.

    Article  PubMed  Google Scholar 

  6. Dumas, F., White, L., Stubbs, B. A., Cariou, A., & Rea, T. D. (2012). Long-term prognosis following resuscitation from out of hospital cardiac arrest: role of percutaneous coronary intervention and therapeutic hypothermia. Journal of the American College of Cardiology, 60, 21–27. doi:10.1016/j.jacc.2012.03.036.

    Article  PubMed  Google Scholar 

  7. Ibrahim, K. (2011). Increased rate of stent thrombosis due to clopidogrel resistance in patients in therapeutic hypothermia after sudden cardiac death. European Heart Journal, 32(Suppl), 252 [abstract].

    Google Scholar 

  8. Penela, D., Magaldi, M., Fontanals, J., et al. (2013). Hypothermia in acute coronary syndrome: brain salvage versus stent thrombosis? Journal of the American College of Cardiology, 61, 686–687. doi:10.1016/j.jacc.2012.10.029.

    Article  PubMed  Google Scholar 

  9. O’Gara, P. T., Kushner, F. G., Ascheim, D. D., et al. (2013). 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 61, e78–e140. doi:10.1016/j.jacc.2012.11.019.

    Article  PubMed  Google Scholar 

  10. Ferreiro, J. L., & Angiolillo, D. J. (2012). New directions in antiplatelet therapy. Circulation Cardiovascular Interventions, 5, 433–445. doi:10.1161/CIRCINTERVENTIONS.111.966176.

    Article  PubMed  Google Scholar 

  11. Angiolillo, D. J., & Ferreiro, J. L. (2010). Platelet adenosine diphosphate P2Y12 receptor antagonism: benefits and limitations of current treatment strategies and future directions. Revista Española de Cardiología, 63, 60–76. doi:10.1016/S1885-5857(10)70010-4.

    Article  PubMed  Google Scholar 

  12. Xavier, R. G., White, A. E., Fox, S. C., Wilcox, R. G., & Heptinstall, S. (2007). Enhanced platelet aggregation and activation under conditions of hypothermia. Thrombosis and Haemostasis, 98, 1266–1275. doi:10.1160/TH07-03-0189.

    CAS  PubMed  Google Scholar 

  13. Scharbert, G., Kalb, M. L., Essmeister, R., & Kozek-Langenecker, S. A. (2010). Mild and moderate hypothermia increases platelet aggregation induced by various agonists: a whole blood in vitro study. Platelets, 21, 44–48. doi:10.3109/09537100903420269.

    Article  CAS  PubMed  Google Scholar 

  14. Högberg, C., Erlinge, D., & Braun, O. O. (2009). Mild hypothermia does not attenuate platelet aggregation and may even increase ADP-stimulated platelet aggregation after clopidogrel treatment. Thrombosis Journal, 7, 2. doi:10.1186/1477-9560-7-2.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Bjelland, T. W., Hjertner, Ø., Klepstad, P., Kaisen, K., Dale, O., & Haugen, B. O. (2011). Antiplatelet effect of clopidogrel is reduced in patients treated with therapeutic hypothermia after cardiac arrest. Resuscitation, 81, 1627–1631. doi:10.1016/j.resuscitation.2010.07.002.

    Article  Google Scholar 

  16. Sibbing, D., Braun, S., Jawansky, S., et al. (2008). Assessment of ADP-induced platelet aggregation with light transmission aggregometry and multiple electrode platelet aggregometry before and after clopidogrel treatment. Thrombosis and Haemostasis, 99, 121–126. doi:10.1160/TH07-07-0478.

    CAS  PubMed  Google Scholar 

  17. Bonello, L., Tantry, U. S., Marcucci, R., et al. (2010). Consensus and future directions on the definition of high on-treatment platelet reactivity to adenosine diphosphate. Journal of the American College of Cardiology, 56, 919–933. doi:10.1016/j.jacc.2010.04.047.

    Article  CAS  PubMed  Google Scholar 

  18. Malinin, A., Pokov, A., Spergling, M., et al. (2007). Monitoring platelet inhibition after clopidogrel with the VerifyNow-P2Y12(R) rapid analyzer: the VERIfy Thrombosis risk ASsessment (VERITAS) study. Thrombosis Research, 119, 277–284. doi:10.1016/j.thrombres.2006.01.019.

    Article  CAS  PubMed  Google Scholar 

  19. Fox, S. C., Behan, M. W., & Heptinstall, S. (2004). Inhibition of ADP-induced intracellular Ca2+ responses and platelet aggregation by the P2Y12 receptor antagonists AR-C69931MX and clopidogrel is enhanced by prostaglandin E1. Cell Calcium, 35, 39–46. doi:10.1016/s0146-4060(03)00170-2.

    Article  CAS  PubMed  Google Scholar 

  20. Stone, G. W., Witzenbichler, B., Weisz, G., et al. (2013). Platelet reactivity and clinical outcomes after coronary artery implantation of drug-eluting stents (ADAPT-DES): a prospective multicentre registry study. Lancet, 382, 614–623. doi:10.1016/S0140-6736(13)61170-8.

    Article  PubMed  Google Scholar 

  21. Anderson, J. L., Adams, C. D., Antman, E. M., et al. (2013). 2012 ACCF/AHA focused update incorporated into the ACCF/AHA 2007 guidelines for the management of patients with unstable angina/non-ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Journal of the American College of Cardiology, 61, e179–e347. doi:10.1016/j.jacc.2013.01.014.

    Article  PubMed  Google Scholar 

  22. Laver, S., Farrow, C., Turner, D., & Nolan, J. (2004). Mode of death after admission to an intensive care unit following cardiac arrest. Intensive Care Medicine, 30, 2126–2128. doi:10.1007/s00134-004-2425-z.

    Article  PubMed  Google Scholar 

  23. Nielsen, N., Wetterslev, J., Cronberg, T., et al. (2013). Targeted temperature management at 33 °C versus 36 °C after cardiac arrest. New England Journal of Medicine, 369, 2197–2206. doi:10.1056/NEJMoa1310519.

    Article  CAS  PubMed  Google Scholar 

  24. Soffer, D., Moussa, I., Harjai, K. J., et al. (2003). Impact of angina class on inhibition of platelet aggregation following clopidogrel loading in patients undergoing coronary intervention: do we need more aggressive dosing regimens in unstable angina? Catheterization and Cardiovascular Interventions, 59, 21–25. doi:10.1002/ccd.10494.

    Article  PubMed  Google Scholar 

  25. Sibbing, D., von Beckerath, O., Schömig, A., Kastrati, A., & von Beckerath, N. (2007). Platelet function in clopidogrel-treated patients with acute coronary syndrome. Blood Coagulation and Fibrinolysis, 18, 335–339. doi:10.1097/MBC.0b013e3280d21aed.

    Article  CAS  PubMed  Google Scholar 

  26. Bonello, L., Berbis, J., Laine, M., et al. (2012). Biological efficacy of a 600 mg loading dose of clopidogrel in ST-elevation myocardial infarction. Thrombosis and Haemostasis, 108, 101–106. doi:10.1160/TH12-02-0125.

    Article  CAS  PubMed  Google Scholar 

  27. Montalescot, G., Sideris, G., Meuleman, C., et al. (2006). A randomized comparison of high clopidogrel loading doses in patients with non-ST-segment elevation acute coronary syndromes: the ALBION (Assessment of the Best Loading Dose of Clopidogrel to Blunt Platelet Activation, Inflammation and Ongoing Necrosis) trial. Journal of the American College of Cardiology, 48, 931–938. doi:10.1016/j.jacc.2006.04.090.

    Article  CAS  PubMed  Google Scholar 

  28. von Beckerath, N., Taubert, D., Pogatsa-Murray, G., Schömig, E., Kastrati, A., & Schömig, A. (2005). Absorption, metabolization, and antiplatelet effects of 300-, 600-, and 900-mg loading doses of clopidogrel: results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen: Choose Between 3 High Oral Doses for Immediate Clopidogrel Effect) Trial. Circulation, 112, 2946–2950. doi:10.1161/CIRCULATIONAHA.105.559088.

    Google Scholar 

  29. Hochholzer, W., Trenk, D., Frundi, D., et al. (2005). Time dependence of platelet inhibition after a 600-mg loading dose of clopidogrel in a large, unselected cohort of candidates for percutaneous coronary intervention. Circulation, 111, 2560–2564. doi:10.1161/01.CIR.0000160869.75810.98.

    Article  CAS  PubMed  Google Scholar 

  30. Heestermans, A. A., van Werkum, J. W., Taubert, D., et al. (2008). Impaired bioavailability of clopidogrel in patients with a ST-segment elevation myocardial infarction. Thrombosis Research, 122, 776–781. doi:10.1016/j.thromres.2008.01.021.

    Article  CAS  PubMed  Google Scholar 

  31. Nührenberg, T. G., Trenk, D., Leggewie, S., et al. (2012). Clopidogrel pretreatment of patients with ST-elevation myocardial infarction does not affect platelet reactivity after subsequent prasugrel-loading: platelet reactivity in an observational study. Platelets, 24, 549–553. doi:10.3109/09537104.2012.736045.

    Article  PubMed  Google Scholar 

  32. Ferreiro, J. L., Homs, S., Berdejo, J., et al. (2013). Clopidogrel pretreatment in primary percutaneous coronary intervention: prevalence of high on-treatment platelet reactivity and impact on preprocedural patency of the infarct-related artery. Thrombosis and Haemostasis, 110, 110–117. doi:10.1160/TH13-01-0057.

    Article  CAS  PubMed  Google Scholar 

  33. Rosillo, S. O., Lopez-de-Sa, E., Iniesta, A. M., et al. (2013). Is therapeutic hypothermia a risk factor for stent thrombosis? Journal of the American College of Cardiology. doi:10.1016/j.jacc.2013.09.028.

    PubMed  Google Scholar 

  34. Polderman, K. H. (2009). Mechanisms of action, physiological effects, and complications of hypothermia. Critical Care Medicine, 37(7 Suppl), S186–S202. doi:10.1097/CCM.0b013e3181aa5241.

    Article  PubMed  Google Scholar 

  35. Arpino, P. A., & Greer, D. M. (2008). Practical pharmacologic aspects of therapeutic hypothermia after cardiac arrest. Pharmacotherapy, 28, 102–111. doi:10.1592/phco.28.1.102.

    Article  CAS  PubMed  Google Scholar 

  36. Frelinger, A. L., 3rd, Furman, M. I., Barnard, M. R., Krueger, L. A., Dae, M. W., & Michelson, A. D. (2003). Combined effects of mild hypothermia and glycoprotein IIb/IIIa antagonists on platelet-platelet and leukocyte-platelet aggregation. American Journal of Cardiology, 92, 1099–1101. doi:10.1016/j.amjcard.2003.06.007.

    Article  CAS  PubMed  Google Scholar 

  37. Scharbert, G., Kalb, M., Marschalek, C., & Kozek-Langenecker, S. A. (2006). The effects of test temperature and storage temperature on platelet aggregation: a whole blood in vitro study. Anesthesia and Analgesia, 102, 1280–1284. doi:10.1213/01.ane.0000199399.04496.6d.

    Article  PubMed  Google Scholar 

  38. Faraday, N., & Rosenfeld, B. A. (1998). In vitro hypothermia enhances platelet GPIIb-IIIa activation and P-selectin expression. Anesthesiology, 88, 1579–1585. doi:10.1097/00000542-199806000-00022.

    Article  CAS  PubMed  Google Scholar 

  39. Straub, A., Krajewski, S., Hohmann, J. D., et al. (2011). Evidence of platelet activation at medically used hypothermia and mechanistic data indicating ADP as a key mediator and therapeutic target. Arteriosclerosis, Thrombosis, and Vascular Biology, 31, 1607–1616. doi:10.1161/ATVBAHA.111.226373.

    Article  CAS  PubMed  Google Scholar 

  40. Tablin, F., Oliver, A. E., Walker, N. J., Crowe, L. M., & Crowe, J. H. (1996). Membrane phase transition of intact human platelets: correlation with cold-induced activation. Journal of Cellular Physiology, 168, 305–313. doi:10.1002/(SICI)1097-4652(199608)168:2<305::AID-JCP9>3.0.CO;2-T.

    Article  CAS  PubMed  Google Scholar 

  41. Berlin, E., Shapiro, S. G., & Friedland, M. (1984). Platelet membrane fluidity and aggregation of rabbit platelets. Atherosclerosis, 51, 223–239. doi:10.1016/0021-9150(84)90170-9.

    Article  CAS  PubMed  Google Scholar 

  42. Wiviott, S. D., Braunwald, E., McCabe, C. H., et al. (2007). Prasugrel versus clopidogrel in patients with acute coronary syndromes. New England Journal of Medicine, 357, 2001–2015. doi:10.1056/NEJMoa0706482.

    Article  CAS  PubMed  Google Scholar 

  43. Wallentin, L., Becker, R. C., Budaj, A., et al. (2009). Ticagrelor versus clopidogrel in patients with acute coronary syndromes. New England Journal of Medicine, 361, 1045–1057. doi:10.1056/NEJMoa0904327.

    Article  CAS  PubMed  Google Scholar 

  44. Parodi, G., Valenti, R., Bellandi, B., et al. (2013). Comparison of prasugrel and ticagrelor loading doses in ST-segment elevation myocardial infarction patients: RAPID (Rapid Activity of Platelet Inhibitor Drugs) primary PCI study. Journal of the American College of Cardiology, 61, 1601–1606. doi:10.1016/j.jacc.2013.01.024.

    Article  CAS  PubMed  Google Scholar 

  45. Alexopoulos, D., Xanthopoulou, I., Gkizas, V., et al. (2012). Randomized assessment of ticagrelor versus prasugrel antiplatelet effects in patients with ST-segment-elevation myocardial infarction. Circulation Cardiovascular Interventions, 5, 797–804. doi:10.1161/CIRCINTERVENTIONS.112.972323.

    Article  CAS  PubMed  Google Scholar 

  46. Ueno, M., Ferreiro, J. L., & Angiolillo, D. J. (2010). Update on the clinical development of cangrelor. Expert Review of Cardiovascular Therapy, 8, 1069–1077. doi:10.1586/erc.10.90.

    Article  CAS  PubMed  Google Scholar 

  47. Angiolillo, D. J., Schneider, D. J., Bhatt, D. L., et al. (2012). Pharmacodynamic effects of cangrelor and clopidogrel: the platelet function substudy from the cangrelor versus standard therapy to achieve optimal management of platelet inhibition (CHAMPION) trials. Journal of Thrombosis and Thrombolysis, 34, 44–55. doi:10.1007/s11239-012-0737-3.

    Article  CAS  PubMed  Google Scholar 

  48. Krajewski, S., Kurz, J., Neumann, B., et al. (2012). Short-acting P2Y12 blockade to reduce platelet dysfunction and coagulopathy during experimental extracorporeal circulation and hypothermia. British Journal of Anaesthesia, 108, 912–921. doi:10.1093/bja/aer518.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of Interest

José Luis Ferreiro (corresponding author) reports (a) honoraria for lectures from Eli Lilly Co., Daiichi Sankyo, Inc., and Astra Zeneca and (b) consulting fees from Astra Zeneca and Eli Lilly Co. Dominick J. Angiolillo received payment as an individual for (a) consulting fee or honorarium from Bristol Myers Squibb, Sanofi-Aventis, Eli Lilly, Daiichi Sankyo, The Medicines Company, AstraZeneca, Merck, Evolva, Abbott Vascular, and PLx Pharma and (b) participation in review activities from Johnson & Johnson, St. Jude, and Sunovion. Institutional payments for grants from Bristol Myers Squibb, Sanofi-Aventis, Glaxo Smith Kline, Otsuka, Eli Lilly, Daiichi Sankyo, The Medicines Company, AstraZeneca, and Evolva and has other financial relationships with Esther and King Biomedical Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Luis Ferreiro.

Additional information

Associate Editor Emanuele Barbato oversaw the review of this article

José Luis Ferreiro and José Carlos Sánchez-Salado have contributed equally as first authors to this manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreiro, J.L., Sánchez-Salado, J.C., Gracida, M. et al. Impact of Mild Hypothermia on Platelet Responsiveness to Aspirin and Clopidogrel: an In Vitro Pharmacodynamic Investigation. J. of Cardiovasc. Trans. Res. 7, 39–46 (2014). https://doi.org/10.1007/s12265-013-9533-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9533-5

Keywords

Navigation