Skip to main content

Advertisement

Log in

CXCR4+ and FLK-1+ Identify Circulating Cells Associated with Improved Cardiac Function in Patients Following Myocardial Infarction

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

The biomarkers CXCR4/FLK-1 select cardiac progenitors from a stem cell pool in experimental models. However, the translational value of these cells in human ischemic heart disease is unknown. Here, flow-cytometry identified CD45/CXCR4+/FLK-1+ cells in 30 individuals without ischemic heart disease and 33 first-time acute myocardial infarction (AMI) patients. AMI patients had higher CD45/CXCR4+/FLK-1+ cell-load at 48-h and 3- and 6-months post-AMI (p = 0.003,0.04,0.04, respectively) than controls. Cardiovascular risk factors and left ventricular (LV) ejection fraction were not associated with cell-load. 2D-speckle-tracking strain echocardiography assessment of LV systolic function showed improvement in longitudinal strain and dyssynchrony during follow-up associated with longitudinal increases in and higher 48-h post-AMI CD45/CXCR4+/FLK-1+ cell-load (r = −0.525, p = 0.025; r = −0.457, p = 0.029, respectively). In conclusion, CD45/CXCR4+/FLK-1+ cells are present in adult human circulation, increased in AMI and associated with improved LV systolic function. Thus, CD45/CXCR4+/FLK-1+ cells may provide a diagnostic tool to follow cardiac regenerative capacity and potentially serve as a prognostic marker in AMI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anversa, P., Kajstura, J., Leri, A., & Bolli, R. (2006). Life and death of cardiac stem cells: a paradigm shift in cardiac biology. Circulation, 113(11), 1451–1463. doi:10.1161/circulationaha.105.595181.

    Article  PubMed  Google Scholar 

  2. Bergmann, O., Bhardwaj, R. D., Bernard, S., Zdunek, S., Barnabe-Heider, F., Walsh, S., Zupicich, J., Alkass, K., Buchholz, B. A., Druid, H., Jovinge, S., & Frisen, J. (2009). Evidence for cardiomyocyte renewal in humans. Science, 324(5923), 98–102. doi:10.1126/science.1164680.

    Article  PubMed  CAS  Google Scholar 

  3. Kajstura, J., Rota, M., Cappetta, D., Ogorek, B., Arranto, C., Bai, Y., Ferreira-Martins, J., Signore, S., Sanada, F., Matsuda, A., Kostyla, J., Caballero, M. V., Fiorini, C., D’Alessandro, D. A., Michler, R. E., del Monte, F., Hosoda, T., Perrella, M. A., Leri, A., Buchholz, B. A., Loscalzo, J., & Anversa, P. (2012). Cardiomyogenesis in the aging and failing human heart. Circulation, 126(15), 1869–1881. doi:10.1161/circulationaha.112.118380.

    Article  PubMed  CAS  Google Scholar 

  4. Nelson, T. J., Behfar, A., Yamada, S., Martinez-Fernandez, A., & Terzic, A. (2009). Stem cell platforms for regenerative medicine. Clinical and Translational Science, 2(3), 222–227. doi:10.1111/j.1752-8062.2009.00096.x.

    Article  PubMed  CAS  Google Scholar 

  5. Bartunek, J., Vanderheyden, M., Vandekerckhove, B., Mansour, S., De Bruyne, B., De Bondt, P., Van Haute, I., Lootens, N., Heyndrickx, G., & Wijns, W. (2005). Intracoronary injection of CD133-positive enriched bone marrow progenitor cells promotes cardiac recovery after recent myocardial infarction: feasibility and safety. Circulation, 112(9 SUPPL.), I178–I183.

    PubMed  Google Scholar 

  6. Janssens, S., Dubois, C., Bogaert, J., Theunissen, K., Deroose, C., Desmet, W., Kalantzi, M., Herbots, L., Sinnaeve, P., Dens, J., Maertens, J., Rademakers, F., Dymarkowski, S., Gheysens, O., Van Cleemput, J., Bormans, G., Nuyts, J., Belmans, A., Mortelmans, L., Boogaerts, M., & Van De Werf, F. (2006). Autologous bone marrow-derived stem-cell transfer in patients with ST-segment elevation myocardial infarction: double-blind, randomised controlled trial. The Lancet, 367(9505), 113–121.

    Article  Google Scholar 

  7. Lunde, K., Solheim, S., Forfang, K., Arnesen, H., Brinch, L., Bjørnerheim, R., Ragnarsson, A., Egeland, T., Endresen, K., Ilebekk, A., Mangschau, A., & Aakhus, S. (2008). Anterior myocardial infarction with acute percutaneous coronary intervention and intracoronary injection of autologous mononuclear bone marrow cells. safety, clinical outcome, and serial changes in left ventricular function during 12-months’ follow-up. Journal of the American College of Cardiology, 51(6), 674–676.

    Article  PubMed  Google Scholar 

  8. Meyer, G. P., Wollert, K. C., Lotz, J., Steffens, J., Lippolt, P., Fichtner, S., Hecker, H., Schaefer, A., Arseniev, L., Hertenstein, B., Ganser, A., & Drexler, H. (2006). Intracoronary bone marrow cell transfer after myocardial infarction: eighteen months’ follow-up data from the randomized, controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial. Circulation, 113(10), 1287–1294.

    Article  PubMed  Google Scholar 

  9. Schächinger, V., Erbs, S., Elsässer, A., Haberbosch, W., Hambrecht, R., Hölschermann, H., Yu, J., Corti, R., Mathey, D. G., Hamm, C. W., Süselbeck, T., Werner, N., Haase, J., Neuzner, J., Germing, A., Mark, B., Assmus, B., Tonn, T., Dimmeler, S., & Zeiher, A. M. (2006). Improved clinical outcome after intracoronary administration of bone-marrow-derived progenitor cells in acute myocardial infarction: final 1-year results of the REPAIR-AMI trial. European Heart Journal, 27(23), 2775–2783.

    Article  PubMed  Google Scholar 

  10. Tendera, M., Wojakowski, W., Ruyłło, W., Chojnowska, L., Kpka, C., Tracz, W., Musiałek, P., Piwowarska, W., Nessler, J., Buszman, P., Grajek, S., Brborowicz, P., Majka, M., & Ratajczak, M. Z. (2009). Intracoronary infusion of bone marrow-derived selected CD34 + CXCR4+ cells and non-selected mononuclear cells in patients with acute STEMI and reduced left ventricular ejection fraction: results of randomized, multicentre myocardial regeneration by intracoronary infusion of selected population of stem cells in acute myocardial infarction (REGENT) trial. European Heart Journal, 30(11), 1313–1321.

    Article  PubMed  Google Scholar 

  11. Bartunek, J., Behfar, A., Dolatabadi, D., Vanderheyden, M., Ostojic, M., Dens, J., El Nakadi, B., Banovic, M., Beleslin, B., Vrolix, M., Legrand, V., Vrints, C., Vanoverschelde, J. L., Crespo-Diaz, R., Homsy, C., Tendera, M., Waldman, S., Wijns, W., & Terzic, A. (2013). Cardiopoietic stem cell therapy in heart failure: the C-CURE (Cardiopoietic stem Cell therapy in heart failURE) multicenter randomized trial with lineage-specified biologics. Journal of the American College of Cardiology, 61(23), 2329–2338. doi:10.1016/j.jacc.2013.02.071.

    Article  PubMed  Google Scholar 

  12. Rosenzweig, A. (2006). Cardiac cell therapy—mixed results from mixed cells. The New England Journal of Medicine, 355(12), 1274–1277.

    Article  PubMed  CAS  Google Scholar 

  13. Nelson, T. J., & Terzic, A. (2011). Induced pluripotent stem cells: an emerging theranostics platform. Clinical Pharmacology and Therapeutics, 89(5), 648–650.

    Article  PubMed  CAS  Google Scholar 

  14. Blau, H. M., Brazelton, T. R., & Weimann, J. M. (2001). The evolving concept of a stem cell: entity or function? Cell, 105(7), 829–841.

    Article  PubMed  CAS  Google Scholar 

  15. Wojakowski, W., Landmesser, U., Bachowski, R., Jadczyk, T., & Tendera, M. (2012). Mobilization of stem and progenitor cells in cardiovascular diseases. Leukemia, 26(1), 23–33. doi:10.1038/leu.2011.184.

    Article  PubMed  CAS  Google Scholar 

  16. Schmidt-Lucke, C., Fichtlscherer, S., Aicher, A., Tschope, C., Schultheiss, H. P., Zeiher, A. M., & Dimmeler, S. (2010). Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One, 5(11), e13790. doi:10.1371/journal.pone.0013790.

    Article  PubMed  Google Scholar 

  17. Wojakowski, W., Kucia, M., Kazmierski, M., Ratajczak, M. Z., & Tendera, M. (2008). Circulating progenitor cells in stable coronary heart disease and acute coronary syndromes: relevant reparatory mechanism? Heart, 94(1), 27–33. doi:10.1136/hrt.2006.103358.

    Article  PubMed  CAS  Google Scholar 

  18. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., Oz, M. C., Hicklin, D. J., Witte, L., Moore, M. A. S., & Rafii, S. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34+ cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    PubMed  CAS  Google Scholar 

  19. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: characterization and role in vascular biology. Circulation Research, 95(4), 343–353. doi:10.1161/01.res.0000137877.89448.78.

    Article  PubMed  CAS  Google Scholar 

  20. Massa, M., Rosti, V., Ferrario, M., Campanelli, R., Ramajoli, I., Rosso, R., De Ferrari, G. M., Ferlini, M., Goffredo, L., Bertoletti, A., Klersy, C., Pecci, A., Moratti, R., & Tavazzi, L. (2005). Increased circulating hematopoietic and endothelial progenitor cells in the early phase of acute myocardial infarction. Blood, 105(1), 199–206. doi:10.1182/blood-2004-05-1831.

    Article  PubMed  CAS  Google Scholar 

  21. Shintani, S., Murohara, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., Sasaki, K., Shimada, T., Oike, Y., & Imaizumi, T. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103(23), 2776–2779.

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt-Lucke, C., Rossig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kamper, U., Dimmeler, S., & Zeiher, A. M. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111(22), 2981–2987. doi:10.1161/circulationaha.104.504340.

    Article  PubMed  Google Scholar 

  23. Werner, N., Kosiol, S., Schiegl, T., Ahlers, P., Walenta, K., Link, A., Bohm, M., & Nickenig, G. (2005). Circulating endothelial progenitor cells and cardiovascular outcomes. The New England Journal of Medicine, 353(10), 999–1007. doi:10.1056/NEJMoa043814.

    Article  PubMed  CAS  Google Scholar 

  24. Quaini, F., Urbanek, K., Beltrami, A. P., Finato, N., Beltrami, C. A., Nadal-Ginard, B., Kajstura, J., Leri, A., & Anversa, P. (2002). Chimerism of the transplanted heart. The New England Journal of Medicine, 346(1), 5–15. doi:10.1056/NEJMoa012081.

    Article  PubMed  Google Scholar 

  25. Wojakowski, W., Tendera, M., Michalowska, A., Majka, M., Kucia, M., Maslankiewicz, K., Wyderka, R., Ochala, A., & Ratajczak, M. Z. (2004). Mobilization of CD34/CXCR4+, CD34/CD117+, c-met + stem cells, and mononuclear cells expressing early cardiac, muscle, and endothelial markers into peripheral blood in patients with acute myocardial infarction. Circulation, 110(20), 3213–3220. doi:10.1161/01.cir.0000147609.39780.02.

    Article  PubMed  CAS  Google Scholar 

  26. Kucia, M., Dawn, B., Hunt, G., Guo, Y., Wysoczynski, M., Majka, M., Ratajczak, J., Rezzoug, F., Ildstad, S., Bolli, R., & Ratajczak, M. (2004). Cells expressing early cardiac markers reside in the bone marrow and are mobilized into the peripheral blood after myocardial infarction. Circulation Research, 95(caf8c22e-7f28-fab8-2a7c-2477f9bdeb5d), 1191–1200. doi:10.1161/01.RES.0000150856.47324.5b.

    Article  PubMed  CAS  Google Scholar 

  27. Nelson, T. J., Faustino, R. S., Chiriac, A., Crespo-Diaz, R., Behfar, A., & Terzic, A. (2008). CXCR4+/FLK-1+ biomarkers select a cardiopoietic lineage from embryonic stem cells. Stem Cells, 26(6), 1464–1473.

    Article  PubMed  CAS  Google Scholar 

  28. Thygesen, K., Alpert, J. S., & White, H. D. (2007). Universal definition of myocardial infarction. Journal of the American College of Cardiology, 50(22), 2173–2195. doi:10.1016/j.jacc.2007.09.011.

    Article  PubMed  Google Scholar 

  29. Cheitlin, M. D., Armstrong, W. F., Aurigemma, G. P., Beller, G. A., Bierman, F. Z., Davis, J. L., Douglas, P. S., Faxon, D. P., Gillam, L. D., Kimball, T. R., Kussmaul, W. G., Pearlman, A. S., Philbrick, J. T., Rakowski, H., Thys, D. M., Antman, E. M., Smith, S. C., Jr., Alpert, J. S., Gregoratos, G., Anderson, J. L., Hiratzka, L. F., Hunt, S. A., Fuster, V., Jacobs, A. K., Gibbons, R. J., & Russell, R. O. (2003). ACC/AHA/ASE 2003 guideline update for the clinical application of echocardiography: summary article. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASE Committee to Update the 1997 Guidelines for the Clinical Application of Echocardiography). Journal of the American Society of Echocardiography, 16(10), 1091–1110. doi:10.1016/s0894-7317(03)00685-0.

    PubMed  Google Scholar 

  30. Leitman, M., Lysyansky, P., Sidenko, S., Shir, V., Peleg, E., Binenbaum, M., Kaluski, E., Krakover, R., & Vered, Z. (2004). Two-dimensional strain-a novel software for real-time quantitative echocardiographic assessment of myocardial function. Journal of the American Society of Echocardiography, 17(10), 1021–1029. doi:10.1016/j.echo.2004.06.019.

    Article  PubMed  Google Scholar 

  31. Mor-Avi, V., Lang, R. M., Badano, L. P., Belohlavek, M., Cardim, N. M., Derumeaux, G., Galderisi, M., Marwick, T., Nagueh, S. F., Sengupta, P. P., Sicari, R., Smiseth, O. A., Smulevitz, B., Takeuchi, M., Thomas, J. D., Vannan, M., Voigt, J. U., & Zamorano, J. L. (2011). Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications endorsed by the Japanese Society of Echocardiography. Journal of the American Society of Echocardiography, 24(3), 277–313. doi:10.1016/j.echo.2011.01.015.

    Article  PubMed  Google Scholar 

  32. Korinek, J., Wang, J., Sengupta, P. P., Miyazaki, C., Kjaergaard, J., McMahon, E., Abraham, T. P., & Belohlavek, M. (2005). Two-dimensional strain—a Doppler-independent ultrasound method for quantitation of regional deformation: validation in vitro and in vivo. Journal of the American Society of Echocardiography, 18(12), 1247–1253. doi:10.1016/j.echo.2005.03.024.

    Article  PubMed  Google Scholar 

  33. Pirat, B., Khoury, D. S., Hartley, C. J., Tiller, L., Rao, L., Schulz, D. G., Nagueh, S. F., & Zoghbi, W. A. (2008). A novel feature-tracking echocardiographic method for the quantitation of regional myocardial function: validation in an animal model of ischemia–reperfusion. Journal of the American College of Cardiology, 51(6), 651–659. doi:10.1016/j.jacc.2007.10.029.

    Article  PubMed  Google Scholar 

  34. Reant, P., Labrousse, L., Lafitte, S., Bordachar, P., Pillois, X., Tariosse, L., Bonoron-Adele, S., Padois, P., Deville, C., Roudaut, R., & Dos Santos, P. (2008). Experimental validation of circumferential, longitudinal, and radial 2-dimensional strain during dobutamine stress echocardiography in ischemic conditions. Journal of the American College of Cardiology, 51(2), 149–157. doi:10.1016/j.jacc.2007.07.088.

    Article  PubMed  Google Scholar 

  35. Fine, N. M., Shah, A. A., Han, I. Y., Yu, Y., Hsiao, J. F., Koshino, Y., Saleh, H. K., Miller, F. A., Jr., Oh, J. K., Pellikka, P. A., & Villarraga, H. R. (2013). Left and right ventricular strain and strain rate measurement in normal adults using velocity vector imaging: an assessment of reference values and intersystem agreement. The International Journal of Cardiovascular Imaging, 29(3), 571–580. doi:10.1007/s10554-012-0120-7.

    Article  PubMed  Google Scholar 

  36. Asanuma, T., Uranishi, A., Masuda, K., Ishikura, F., Beppu, S., & Nakatani, S. (2009). Assessment of myocardial ischemic memory using persistence of post-systolic thickening after recovery from ischemia. JACC. Cardiovascular Imaging, 2(11), 1253–1261. doi:10.1016/j.jcmg.2009.07.008.

    Article  PubMed  Google Scholar 

  37. Okuda, K., Asanuma, T., Hirano, T., Masuda, K., Otani, K., Ishikura, F., & Beppu, S. (2006). Impact of the coronary flow reduction at rest on myocardial perfusion and functional indices derived from myocardial contrast and strain echocardiography. Journal of the American Society of Echocardiography, 19(6), 781–787. doi:10.1016/j.echo.2005.10.016.

    Article  PubMed  Google Scholar 

  38. Pislaru, C., Belohlavek, M., Bae, R. Y., Abraham, T. P., Greenleaf, J. F., & Seward, J. B. (2001). Regional asynchrony during acute myocardial ischemia quantified by ultrasound strain rate imaging. Journal of the American College of Cardiology, 37(4), 1141–1148.

    Article  PubMed  CAS  Google Scholar 

  39. Voigt, J. U., Exner, B., Schmiedehausen, K., Huchzermeyer, C., Reulbach, U., Nixdorff, U., Platsch, G., Kuwert, T., Daniel, W. G., & Flachskampf, F. A. (2003). Strain-rate imaging during dobutamine stress echocardiography provides objective evidence of inducible ischemia. Circulation, 107(16), 2120–2126. doi:10.1161/01.cir.0000065249.69988.aa.

    Article  PubMed  Google Scholar 

  40. Hernandez, P. A., Gorlin, R. J., Lukens, J. N., Taniuchi, S., Bohinjec, J., Francois, F., Klotman, M. E., & Diaz, G. A. (2003). Mutations in the chemokine receptor gene CXCR4 are associated with WHIM syndrome, a combined immunodeficiency disease. Nature Genetics, 34(1), 70–74. doi:10.1038/ng1149.

    Article  PubMed  CAS  Google Scholar 

  41. Ratajczak, M. Z., Zuba-Surma, E., Kucia, M., Reca, R., Wojakowski, W., & Ratajczak, J. (2006). The pleiotropic effects of the SDF-1-CXCR4 axis in organogenesis, regeneration and tumorigenesis. Leukemia, 20(11), 1915–1924. doi:10.1038/sj.leu.2404357.

    Article  PubMed  CAS  Google Scholar 

  42. Abbott, J. D., Huang, Y., Liu, D., Hickey, R., Krause, D. S., & Giordano, F. J. (2004). Stromal cell-derived factor-1alpha plays a critical role in stem cell recruitment to the heart after myocardial infarction but is not sufficient to induce homing in the absence of injury. Circulation, 110(21), 3300–3305. doi:10.1161/01.cir.0000147780.30124.cf.

    Article  PubMed  Google Scholar 

  43. Chiriac, A., Terzic, A., Park, S., Ikeda, Y., Faustino, R., & Nelson, T. J. (2010). SDF-1-enhanced cardiogenesis requires CXCR4 induction in pluripotent stem cells. Journal of Cardiovascular Translational Research, 3(6), 674–682. doi:10.1007/s12265-010-9219-1.

    Article  PubMed  Google Scholar 

  44. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., Zeiher, A. M., & Dimmeler, S. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89(1), E1–E7.

    Article  PubMed  CAS  Google Scholar 

  45. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., & Finkel, T. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. The New England Journal of Medicine, 348(7), 593–600. doi:10.1056/NEJMoa022287.

    Article  PubMed  Google Scholar 

  46. Kalogeropoulos, A. P., Georgiopoulou, V. V., Gheorghiade, M., & Butler, J. (2012). Echocardiographic evaluation of left ventricular structure and function: new modalities and potential applications in clinical trials. Journal of Cardiac Failure, 18(2), 159–172. doi:10.1016/j.cardfail.2011.10.019.

    Article  PubMed  Google Scholar 

  47. Asanuma, T., Fukuta, Y., Masuda, K., Hioki, A., Iwasaki, M., & Nakatani, S. (2012). Assessment of myocardial ischemic memory using speckle tracking echocardiography. JACC. Cardiovascular Imaging, 5(1), 1–11. doi:10.1016/j.jcmg.2011.09.019.

    Article  PubMed  Google Scholar 

  48. Belohlavek, M. (2012). Post-systolic shortening: a functional window into ischemic memory? JACC. Cardiovascular Imaging, 5(1), 12–14. doi:10.1016/j.jcmg.2011.09.014.

    Article  PubMed  Google Scholar 

  49. Triller Vrtovec, K., & Vrtovec, B. (2013). Patent eligibility of induced pluripotent stem cell theranostics. Clinical Pharmacology and Therapeutics. doi:10.1038/clpt.2013.11.

    PubMed  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the technical contributions of Jay Hiddinga, Ph.D. and Lisa Nesbitt.

Funding

This work was supported in part by the Todd and Karen Wanek Program for Hypoplastic Left Heart Syndrome, Marriott Regenerative Medicine Award, and Mayo Clinic. It was also supported by CTSA Grant Number UL1 TR000135 and TL1 TR000137 from the National Center for Advancing Translational Science (NCATS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Perez-Terzic.

Additional information

Associate Editor Lorrie Kirshenbaum oversaw the review of this article.

Rahul Suresh and Anca Chiriac are co-first authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Suresh, R., Chiriac, A., Goel, K. et al. CXCR4+ and FLK-1+ Identify Circulating Cells Associated with Improved Cardiac Function in Patients Following Myocardial Infarction. J. of Cardiovasc. Trans. Res. 6, 787–797 (2013). https://doi.org/10.1007/s12265-013-9502-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9502-z

Keywords

Navigation