Skip to main content

Advertisement

Log in

The Therapeutic Potential of miRNAs in Cardiac Fibrosis: Where Do We Stand?

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Recent developments in basic and clinical science have turned the spotlight to miRNAs for their potential therapeutic efficacy. Since their discovery in 1993, it has become clear that miRNAs act as posttranscriptional regulators of protein expression. Their clinical potential was further highlighted by the results of miRNA-based interventions in small laboratory animals. More importantly, their therapeutic effectiveness has been shown recently in phase 2a clinical studies in patients with hepatitis C virus infection, where inhibition of miRNA-122 showed prolonged and dose-dependent viral suppression. A recent study surprisingly revealed the presence of plant-derived miRNAs in the blood of healthy humans. This finding opens up the possibility to explore miRNA-mediated therapeutics derived from (genetically modified) food. Having arrived at this point in our understanding of miRNAs, we provide an overview of current evidence and future potential of miRNA-based therapeutics, focusing on their application in cardiac fibrosis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Swynghedauw, B. (1999). Molecular mechanisms of myocardial remodeling. Physiological Reviews, 79(1), 215–262.

    PubMed  CAS  Google Scholar 

  2. Berk, B. C., Fujiwara, K., & Lehoux, S. (2007). ECM remodeling in hypertensive heart disease. The Journal of Clinical Investigation, 117(3), 568–575.

    Article  PubMed  CAS  Google Scholar 

  3. Weber, K. T., Sun, Y., Tyagi, S. C., & Cleutjens, J. P. (1994). Collagen network of the myocardium: function, structural remodeling and regulatory mechanisms. Journal of Molecular and Cellular Cardiology, 26(3), 279–292.

    Article  PubMed  CAS  Google Scholar 

  4. Spinale, F. G., Janicki, J. S., & Zile, M. R. (2013). Membrane-associated matrix proteolysis and heart failure. Circulation Research, 112(1), 195–208.

    Article  PubMed  CAS  Google Scholar 

  5. Creemers, E. E., & Pinto, Y. M. (2011). Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovascular Research, 89(2), 265–272.

    Article  PubMed  CAS  Google Scholar 

  6. Reddy, V. S., Prabhu, S. D., Mummidi, S., Valente, A. J., Venkatesan, B., Shanmugam, P., et al. (2010). Interleukin-18 induces EMMPRIN expression in primary cardiomyocytes via JNK/Sp1 signaling and MMP-9 in part via EMMPRIN and through AP-1 and NF-kappaB activation. American Journal of Physiology—Heart and Circulatory Physiology, 299(4), H1242–H1254.

    Article  PubMed  CAS  Google Scholar 

  7. Ghosh, A. K., & Varga, J. (2007). The transcriptional coactivator and acetyltransferase p300 in fibroblast biology and fibrosis. Journal of Cellular Physiology, 213(3), 663–671.

    Article  PubMed  CAS  Google Scholar 

  8. Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843–854.

    Article  PubMed  CAS  Google Scholar 

  9. Ambros, V. (2004). The functions of animal microRNAs. Nature, 431(7006), 350–355.

    Article  PubMed  CAS  Google Scholar 

  10. Pasquinelli, A. E. (2012). MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nature Reviews Genetics, 13(4), 271–282.

    PubMed  CAS  Google Scholar 

  11. Lewis, B. P., Burge, C. B., & Bartel, D. P. (2005). Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 120(1), 15–20.

    Article  PubMed  CAS  Google Scholar 

  12. Friedman, R. C., Farh, K. K., Burge, C. B., & Bartel, D. P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research, 19(1), 92–105.

    Article  PubMed  CAS  Google Scholar 

  13. van Rooij, E., Sutherland, L. B., Thatcher, J. E., DiMaio, J. M., Naseem, R. H., Marshall, W. S., et al. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13027–13032.

    Article  PubMed  Google Scholar 

  14. Thomson, D. W., Bracken, C. P., & Goodall, G. J. (2011). Experimental strategies for microRNA target identification. Nucleic Acids Research, 39(16), 6845–6853.

    Article  PubMed  CAS  Google Scholar 

  15. Matkovich, S. J., Van Booven, D. J., Eschenbacher, W. H., & Dorn, G. W. (2011). RISC RNA sequencing for context-specific identification of in vivo microRNA targets. Circulation Research, 108(1), 18–26.

    Article  PubMed  CAS  Google Scholar 

  16. van Rooij, E., & Olson, E. N. (2012). MicroRNA therapeutics for cardiovascular disease: opportunities and obstacles. Nature Reviews Drug Discovery, 11(11), 860–872.

    Article  PubMed  Google Scholar 

  17. Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K. G., Tuschl, T., Manoharan, M., et al. (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature, 438(7068), 685–689.

    Article  PubMed  Google Scholar 

  18. van Rooij, E., Purcell, A. L., & Levin, A. A. (2012). Developing microRNA therapeutics. Circulation Research, 110(3), 496–507.

    Article  PubMed  Google Scholar 

  19. Obad, S., dos Santos, C. O., Petri, A., Heidenblad, M., Broom, O., Ruse, C., et al. (2011). Silencing of microRNA families by seed-targeting tiny LNAs. Nature Genetics, 43(4), 371–378.

    Article  PubMed  CAS  Google Scholar 

  20. Dai, Y., Khaidakov, M., Wang, X., Ding, Z., Su, W., Price, E., et al. (2013). MicroRNAs involved in the regulation of postischemic cardiac fibrosis. Hypertension, 61(4), 751–756.

    Article  PubMed  CAS  Google Scholar 

  21. Tijsen, A. J., Pinto, Y. M., & Creemers, E. E. (2012). Non-cardiomyocyte microRNAs in heart failure. Cardiovascular Research, 93(4), 573–582.

    Article  PubMed  CAS  Google Scholar 

  22. Thum, T., Gross, C., Fiedler, J., Fischer, T., Kissler, S., Bussen, M., et al. (2008). MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fibroblasts. Nature, 456(7224), 980–984.

    Article  PubMed  CAS  Google Scholar 

  23. Patrick, D. M., Montgomery, R. L., Qi, X., Obad, S., Kauppinen, S., Hill, J. A., et al. (2010). Stress-dependent cardiac remodeling occurs in the absence of microRNA-21 in mice. The Journal of Clinical Investigation, 120(11), 3912–3916.

    Article  PubMed  CAS  Google Scholar 

  24. Thum, T., Chau, N., Bhat, B., Gupta, S. K., Linsley, P. S., Bauersachs, J., et al. (2011). Comparison of different miR-21 inhibitor chemistries in a cardiac disease model. The Journal of Clinical Investigation, 121(2), 461–462.

    Article  PubMed  CAS  Google Scholar 

  25. Liang, H., Zhang, C., Ban, T., Liu, Y., Mei, L., Piao, X., et al. (2012). A novel reciprocal loop between microRNA-21 and TGFbetaRIII is involved in cardiac fibrosis. The International Journal of Biochemistry & Cell Biology, 44(12), 2152–2160.

    Article  CAS  Google Scholar 

  26. Villar, A. V., Garcia, R., Merino, D., Llano, M., Cobo, M., Montalvo, C., et al. (2012). Myocardial and circulating levels of microRNA-21 reflect left ventricular fibrosis in aortic stenosis patients. International Journal of Cardiology. doi:10.1016/j.ijcard.2012.07.021.

    PubMed  Google Scholar 

  27. Cardin, S., Guasch, E., Luo, X., Naud, P., Le, Q. K., Shi, Y., et al. (2012). Role for MicroRNA-21 in atrial profibrillatory fibrotic remodeling associated with experimental postinfarction heart failure. Circulation. Arrhythmia and Electrophysiology, 5(5), 1027–1035.

    Article  PubMed  CAS  Google Scholar 

  28. Roy, S., Khanna, S., Hussain, S. R., Biswas, S., Azad, A., Rink, C., et al. (2009). MicroRNA expression in response to murine myocardial infarction: miR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovascular Research, 82(1), 21–29.

    Article  PubMed  CAS  Google Scholar 

  29. Chau, B. N., Xin, C., Hartner, J., Ren, S., Castano, A. P., Linn, G., et al. (2012). MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Science Translational Medicine, 4(121), 121ra18.

    Article  PubMed  Google Scholar 

  30. Wang, B., Komers, R., Carew, R., Winbanks, C. E., Xu, B., Herman-Edelstein, M., et al. (2012). Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis. Journal of the American Society of Nephrology, 23(2), 252–265.

    Article  PubMed  CAS  Google Scholar 

  31. Xiao, J., Meng, X. M., Huang, X. R., Chung, A. C., Feng, Y. L., Hui, D. S., et al. (2012). miR-29 inhibits bleomycin-induced pulmonary fibrosis in mice. Molecular Therapy, 20(6), 1251–1260.

    Article  PubMed  CAS  Google Scholar 

  32. Mott, J. L., Kobayashi, S., Bronk, S. F., & Gores, G. J. (2007). mir-29 regulates Mcl-1 protein expression and apoptosis. Oncogene, 26(42), 6133–6140.

    Article  PubMed  CAS  Google Scholar 

  33. Wang, J., Huang, W., Xu, R., Nie, Y., Cao, X., Meng, J., et al. (2012). MicroRNA-24 regulates cardiac fibrosis after myocardial infarction. Journal of Cellular and Molecular Medicine, 16(9), 2150–2160.

    Article  PubMed  CAS  Google Scholar 

  34. Fiedler, J., Jazbutyte, V., Kirchmaier, B. C., Gupta, S. K., Lorenzen, J., Hartmann, D., et al. (2011). MicroRNA-24 regulates vascularity after myocardial infarction. Circulation, 124(6), 720–730.

    Article  PubMed  CAS  Google Scholar 

  35. Qian, L., Van Laake, L. W., Huang, Y., Liu, S., Wendland, M. F., & Srivastava, D. (2011). miR-24 inhibits apoptosis and represses Bim in mouse cardiomyocytes. The Journal of Experimental Medicine, 208(3), 549–560.

    Article  PubMed  CAS  Google Scholar 

  36. Amelio, I., Lena, A. M., Viticchie, G., Shalom-Feuerstein, R., Terrinoni, A., Dinsdale, D., et al. (2012). miR-24 triggers epidermal differentiation by controlling actin adhesion and cell migration. The Journal of Cell Biology, 199(2), 347–363.

    Article  PubMed  CAS  Google Scholar 

  37. Du, W. W., Fang, L., Li, M., Yang, X., Liang, Y., Peng, C., et al. (2013). MicroRNA miR-24 enhances tumor invasion and metastasis by targeting PTPN9 and PTPRF to promote EGF signaling. Journal of Cell Science, 126(Pt 6), 1440–1453.

    Article  PubMed  CAS  Google Scholar 

  38. Huang, Z. P., Chen, J., Seok, H., Zhang, Z., Kataoka, M., Hu, X., et al. (2013). MicroRNA-22 regulates cardiac hypertrophy and remodeling in response to stress. Circulation Research, 112(9), 1234–1243.

    Article  PubMed  CAS  Google Scholar 

  39. Duisters, R. F., Tijsen, A. J., Schroen, B., Leenders, J. J., Lentink, V., van der Made, I., et al. (2009). miR-133 and miR-30 regulate connective tissue growth factor: implications for a role of microRNAs in myocardial matrix remodeling. Circulation Research, 104(2), 170–178. 6p following 178.

    Article  PubMed  CAS  Google Scholar 

  40. Matkovich, S. J., Wang, W., Tu, Y., Eschenbacher, W. H., Dorn, L. E., Condorelli, G., et al. (2010). MicroRNA-133a protects against myocardial fibrosis and modulates electrical repolarization without affecting hypertrophy in pressure-overloaded adult hearts. Circulation Research, 106(1), 166–175.

    Article  PubMed  CAS  Google Scholar 

  41. Care, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., et al. (2007). MicroRNA-133 controls cardiac hypertrophy. Nature Medicine, 13(5), 613–618.

    Article  PubMed  CAS  Google Scholar 

  42. Liu, N., Bezprozvannaya, S., Williams, A. H., Qi, X., Richardson, J. A., Bassel-Duby, R., et al. (2008). microRNA-133a regulates cardiomyocyte proliferation and suppresses smooth muscle gene expression in the heart. Genes & Development, 22(23), 3242–3254.

    Article  CAS  Google Scholar 

  43. Castoldi, G., Di Gioia, C. R., Bombardi, C., Catalucci, D., Corradi, B., Gualazzi, M. G., et al. (2012). MiR-133a regulates collagen 1A1: potential role of miR-133a in myocardial fibrosis in angiotensin II-dependent hypertension. Journal of Cellular Physiology, 227(2), 850–856.

    Article  PubMed  CAS  Google Scholar 

  44. Pan, Z., Sun, X., Shan, H., Wang, N., Wang, J., Ren, J., et al. (2012). MicroRNA-101 inhibited postinfarct cardiac fibrosis and improved left ventricular compliance via the FBJ osteosarcoma oncogene/transforming growth factor-beta1 pathway. Circulation, 126(7), 840–850.

    Article  PubMed  CAS  Google Scholar 

  45. Hassan, F., Nuovo, G. J., Crawford, M., Boyaka, P. N., Kirkby, S., Nana-Sinkam, S. P., et al. (2012). MiR-101 and miR-144 regulate the expression of the CFTR chloride channel in the lung. PLoS One, 7(11), e50837.

    Article  PubMed  CAS  Google Scholar 

  46. Strillacci, A., Valerii, M. C., Sansone, P., Caggiano, C., Sgromo, A., Vittori, L., et al. (2013). Loss of miR-101 expression promotes Wnt/beta-catenin signalling pathway activation and malignancy in colon cancer cells. The Journal of Pathology, 229(3), 379–389.

    Article  PubMed  CAS  Google Scholar 

  47. van Rooij, E., Liu, N., & Olson, E. N. (2008). MicroRNAs flex their muscles. Trends in Genetics, 24(4), 159–166.

    Article  PubMed  Google Scholar 

  48. Limana, F., Esposito, G., D'Arcangelo, D., Di, C. A., Romani, S., Melillo, G., et al. (2011). HMGB1 attenuates cardiac remodelling in the failing heart via enhanced cardiac regeneration and miR-206-mediated inhibition of TIMP-3. PLoS One, 6(6), e19845.

    Article  PubMed  CAS  Google Scholar 

  49. Katare, R., Riu, F., Mitchell, K., Gubernator, M., Campagnolo, P., Cui, Y., et al. (2011). Transplantation of human pericyte progenitor cells improves the repair of infarcted heart through activation of an angiogenic program involving micro-RNA-132. Circulation Research, 109(8), 894–906.

    Article  PubMed  CAS  Google Scholar 

  50. Aurora, A. B., Mahmoud, A. I., Luo, X., Johnson, B. A., van Rooij, E., Matsuzaki, S., et al. (2012). MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca(2)(+) overload and cell death. The Journal of Clinical Investigation, 122(4), 1222–1232.

    Article  PubMed  CAS  Google Scholar 

  51. Karakikes, I., Chaanine, A. H., Kang, S., Mukete, B. N., Jeong, D., Zhang, S., et al. (2013). Therapeutic cardiac-targeted delivery of miR-1 reverses pressure overload-induced cardiac hypertrophy and attenuates pathological remodeling. Journal of the American Heart Association, 2(2), e000078.

    Article  PubMed  Google Scholar 

  52. Tsuda, T., Wu, J., Gao, E., Joyce, J., Markova, D., Dong, H., et al. (2012). Loss of fibulin-2 protects against progressive ventricular dysfunction after myocardial infarction. Journal of Molecular and Cellular Cardiology, 52(1), 273–282.

    Article  PubMed  CAS  Google Scholar 

  53. Jopling, C. L., Yi, M., Lancaster, A. M., Lemon, S. M., & Sarnow, P. (2005). Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science, 309(5740), 1577–1581.

    Article  PubMed  CAS  Google Scholar 

  54. Lanford, R. E., Hildebrandt-Eriksen, E. S., Petri, A., Persson, R., Lindow, M., Munk, M. E., et al. (2010). Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science, 327(5962), 198–201.

    Article  PubMed  CAS  Google Scholar 

  55. Janssen, H. L., Reesink, H. W., Lawitz, E. J., Zeuzem, S., Rodriguez-Torres, M., Patel, K., et al. (2013). Treatment of HCV infection by targeting microRNA. The New England Journal of Medicine, 368(18), 1685–1694.

    Article  PubMed  CAS  Google Scholar 

  56. Esau, C., Davis, S., Murray, S. F., Yu, X. X., Pandey, S. K., Pear, M., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metabolism, 3(2), 87–98.

    Article  PubMed  CAS  Google Scholar 

  57. Hsu, S. H., Wang, B., Kota, J., Yu, J., Costinean, S., Kutay, H., et al. (2012). Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. The Journal of Clinical Investigation, 122(8), 2871–2883.

    Article  PubMed  CAS  Google Scholar 

  58. Mariani, J. A., Smolic, A., Preovolos, A., Byrne, M. J., Power, J. M., & Kaye, D. M. (2011). Augmentation of left ventricular mechanics by recirculation-mediated AAV2/1-SERCA2a gene delivery in experimental heart failure. European Journal of Heart Failure, 13(3), 247–253.

    Article  PubMed  CAS  Google Scholar 

  59. Champion, H. C., Georgakopoulos, D., Haldar, S., Wang, L., Wang, Y., & Kass, D. A. (2003). Robust adenoviral and adeno-associated viral gene transfer to the in vivo murine heart: application to study of phospholamban physiology. Circulation, 108(22), 2790–2797.

    Article  PubMed  CAS  Google Scholar 

  60. Jessup, M., Greenberg, B., Mancini, D., Cappola, T., Pauly, D. F., Jaski, B., et al. (2011). Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+−ATPase in patients with advanced heart failure. Circulation, 124(3), 304–313.

    Article  PubMed  CAS  Google Scholar 

  61. Jaski, B. E., Jessup, M. L., Mancini, D. M., Cappola, T. P., Pauly, D. F., Greenberg, B., et al. (2009). Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. Journal of Cardiac Failure, 15(3), 171–181.

    Article  PubMed  CAS  Google Scholar 

  62. Pulicherla, N., Shen, S., Yadav, S., Debbink, K., Govindasamy, L., Agbandje-McKenna, M., et al. (2011). Engineering liver-detargeted AAV9 vectors for cardiac and musculoskeletal gene transfer. Molecular Therapy, 19(6), 1070–1078.

    Article  PubMed  CAS  Google Scholar 

  63. Meijering, B. D., Juffermans, L. J., van Wamel, A., Henning, R. H., Zuhorn, I. S., Emmer, M., et al. (2009). Ultrasound and microbubble-targeted delivery of macromolecules is regulated by induction of endocytosis and pore formation. Circulation Research, 104(5), 679–687.

    Article  PubMed  CAS  Google Scholar 

  64. Dijkmans, P. A., Juffermans, L. J., Musters, R. J., van Wamel, A., ten Cate, F. J., van Gilst, W. H., et al. (2004). Microbubbles and ultrasound: from diagnosis to therapy. European Journal of Echocardiography, 5(4), 245–256.

    Article  PubMed  CAS  Google Scholar 

  65. Tachibana, K., & Tachibana, S. (2001). The use of ultrasound for drug delivery. Echocardiography, 18(4), 323–328.

    Article  PubMed  CAS  Google Scholar 

  66. Lee, Y., El, A. S., & Wood, M. J. (2012). Exosomes and microvesicles: extracellular vesicles for genetic information transfer and gene therapy. Human Molecular Genetics, 21(R1), R125–R134.

    Article  PubMed  CAS  Google Scholar 

  67. Waldenstrom, A., Genneback, N., Hellman, U., & Ronquist, G. (2012). Cardiomyocyte microvesicles contain DNA/RNA and convey biological messages to target cells. PLoS One, 7(4), e34653.

    Article  PubMed  Google Scholar 

  68. Zhang, L., Hou, D., Chen, X., Li, D., Zhu, L., Zhang, Y., et al. (2012). Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Research, 22(1), 107–126.

    Article  PubMed  CAS  Google Scholar 

  69. Snow, J. W., Hale, A., Isaacs, S. K., Baggish, A. L., & Chan, S. Y. (2013). Ineffective delivery of diet-derived microRNAs to recipient animal organisms. RNA Biology, 10(6), doi:10.4161/rna.24909

  70. Khan, A. A., Betel, D., Miller, M. L., Sander, C., Leslie, C. S., & Marks, D. S. (2009). Transfection of small RNAs globally perturbs gene regulation by endogenous microRNAs. Nature Biotechnology, 27(6), 549–555.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We wish to acknowledge our colleagues from the AMC Heart Failure Research Center for constructive discussions. This research was supported by the Netherlands Organization for Scientific Research (NWO): MEERVOUD grant 836.12.002 to EEC, the Inter-universitair Cardiologisch Instituut Nederland (ICIN project 08401), the Nederlandse Hartstichting (grant NHS2007-B167), and the Netherlands CardioVascular Research Initiative (CVON 2011–11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther E. Creemers.

Additional information

Associate Editor: Enrique Lara-Pezzi oversaw the review of this article

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wijnen, W.J., Pinto, Y.M. & Creemers, E.E. The Therapeutic Potential of miRNAs in Cardiac Fibrosis: Where Do We Stand?. J. of Cardiovasc. Trans. Res. 6, 899–908 (2013). https://doi.org/10.1007/s12265-013-9483-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9483-y

Keywords

Navigation