Skip to main content
Log in

New and Emerging Biomarkers in Left Ventricular Systolic Dysfunction—Insight into Dilated Cardiomyopathy

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Dilated cardiomyopathy (DCM) is characterized by deteriorating cardiac performance, impaired contraction and dilation of the left ventricle (or both ventricles). Blood markers—known as “biomarkers”—allow insight into underlying pathophysiologic mechanisms and biologic pathways while predicting outcomes and guiding heart failure management and/or therapies. In this review, we provide an alternative approach to conceptualize heart failure biomarkers: the cardiomyocyte, its surrounding microenvironment, and the macroenvironment, integrating these entities which may impact cellular processes involved in the pathogenesis and/or propagation of DCM. Newer biomarkers of left ventricular systolic dysfunction can be categorized under: (a) myocyte stress and stretch, (b) myocyte apoptosis, (c) cardiac interstitium, (d) inflammation, (e) oxidative stress, (f) cardiac energetics, (g) neurohormones, and (h) renal biomarkers. Biomarkers provide insight into the pathogenesis of DCM while predicting and potentially providing prognostic information in these patients with heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Maron, B. J., Towbin, J. A., Thiene, G., Antzelevitch, C., Corrado, D., Arnett, D., Moss, A. J., Seidman, C. E., Young, J. B., American Heart Association, Council on Clinical Cardiology, Heart Failure, Transplantation Committe, Quality of Care, Outcomes Research, Functional Genomics, Translational Biology Interdisciplinary Working Group, & Council on Epidemiology Prevention. (2006). Contemporary definitions and classification of the cardiomyopathies: An American Heart Association Scientific Statement from the Council on Clinical Cardiology, Heart Failure and Transplantation Committee; Quality of Care and Outcomes Research and Functional Genomics and Translational Biology Interdisciplinary Working Groups; and Council on Epidemiology and Prevention. Circulation, 113, 1807–1816.

    Article  PubMed  Google Scholar 

  2. Richardson, P., McKenna, W., Bristow, M., Maisch, B., Mautner, B., O'Connell, J., Olsen, E., Thiene, G., Goodwin, J., Gyarfas, I., Martin, I., & Nordet, P. (1996). Report of the 1995 World Health Organization/International Society and Federation of Cardiology Task Force on the Definition and Classification of Cardiomyopathies. Circulation, 93, 841–842.

    Article  PubMed  CAS  Google Scholar 

  3. Lang, R. M., Bierig, M., Devereux, R. B., Flachskampf, F. A., Foster, E., Pellikka, P. A., Picard, M. H., Roman, M. J., Seward, J., Shanewise, J. S., Solomon, S. D., Spencer, K. T., Sutton, M. S., Stewart, W. J., Chamber Quantification Writing Group, American Society of Echocardiography's Guidelines, Standards Committee, & European Association of Echocardiography. (2005). Recommendations for chamber quantification: A report from the American Society of Echocardiography's Guidelines and Standards Committee and the Chamber Quantification Writing Group, developed in conjunction with the European Association Of Echocardiography, a branch of the European Society Of Cardiology. Journal of the American Society of Echocardiography, 18, 1440–1463.

    Article  PubMed  Google Scholar 

  4. Davies, M. J., & McKenna, W. J. (1994). Dilated cardiomyopathy: An introduction to pathology and pathogenesis. British Heart Journal, 72, S24.

    Article  PubMed  CAS  Google Scholar 

  5. Maisel, A. S., Krishnaswamy, P., Nowak, R. M., McCord, J., Hollander, J. E., Duc, P., Omland, T., Storrow, A. B., Abraham, W. T., Wu, A. H., Clopton, P., Steg, P. G., Westheim, A., Knudsen, C. W., Perez, A., Kazanegra, R., Herrmann, H. C., McCullough, P. A., & Breathing Not Properly Multinational Study Investigators. (2002). Rapid measurement of B-type natriuretic peptide in the emergency diagnosis of heart failure. The New England Journal of Medicine, 347, 161–167.

    Article  PubMed  CAS  Google Scholar 

  6. Januzzi, J. L., Jr., Camargo, C. A., Anwaruddin, S., Baggish, A. L., Chen, A. A., Krauser, D. G., Tung, R., Cameron, R., Nagurney, J. T., Chae, C. U., Lloyd-Jones, D. M., Brown, D. F., Foran-Melanson, S., Sluss, P. M., Lee-Lewandrowski, E., & Lewandrowski, K. B. (2005). The N-terminal Pro-BNP investigation of dyspnea in the emergency department (PRIDE) study. The American Journal of Cardiology, 95, 948–954.

    Article  PubMed  CAS  Google Scholar 

  7. Maisel, A. S., McCord, J., Nowak, R. M., Hollander, J. E., Wu, A. H., Duc, P., Omland, T., Storrow, A. B., Krishnaswamy, P., Abraham, W. T., Clopton, P., Steg, G., Aumont, M. C., Westheim, A., Knudsen, C. W., Perez, A., Kamin, R., Kazanegra, R., Herrmann, H. C., McCullough, P. A., & Breathing Not Properly Multinational Study Investigators. (2003). Bedside B-type natriuretic peptide in the emergency diagnosis of heart failure with reduced or preserved ejection fraction. Results from the Breathing Not Properly Multinational Study. J Am Coll Cardiol, 41, 2010–2017.

    Article  PubMed  Google Scholar 

  8. O'Donoghue, M., Chen, A., Baggish, A. L., Anwaruddin, S., Krauser, D. G., Tung, R., & Januzzi, J. L. (2005). The effects of ejection fraction on N-terminal proBNP and BNP levels in patients with acute CHF: Analysis from the ProBNP Investigation of Dyspnea in the Emergency Department (PRIDE) study. Journal of Cardiac Failure, 11, S9–S14.

    Article  PubMed  CAS  Google Scholar 

  9. Steg, P. G., Joubin, L., McCord, J., Abraham, W. T., Hollander, J. E., Omland, T., Mentre, F., McCullough, P. A., & Maisel, A. S. (2005). B-type natriuretic peptide and echocardiographic determination of ejection fraction in the diagnosis of congestive heart failure in patients with acute dyspnea. Chest, 128, 21–29.

    Article  PubMed  CAS  Google Scholar 

  10. Felker, G. M., Hasselblad, V., Hernandez, A. F., & O'Connor, C. M. (2009). Biomarker-guided therapy in chronic heart failure: A meta-analysis of randomized controlled trials. American Heart Journal, 158, 422–430.

    Article  PubMed  CAS  Google Scholar 

  11. Januzzi, J. L., Jr., Rehman, S. U., Mohammed, A. A., Bhardwaj, A., Barajas, L., Barajas, J., Kim, H. N., Baggish, A. L., Weiner, R. B., Chen-Tournoux, A., Marshall, J. E., Moore, S. A., Carlson, W. D., Lewis, G. D., Shin, J., Sullivan, D., Parks, K., Wang, T. J., Gregory, S. A., Uthamalingam, S., & Semigran, M. J. (2011). Use of amino-terminal pro-B-type natriuretic peptide to guide outpatient therapy of patients with chronic left ventricular systolic dysfunction. J Am Coll Cardiol, 58, 1881–1889.

    Article  PubMed  CAS  Google Scholar 

  12. Macheret, F., Boerrigter, G., McKie, P., Costello-Boerrigter, L., Lahr, B., Heublein, D., Sandberg, S., Ikeda, Y., Cataliotti, A., Bailey, K., Rodeheffer, R., & Burnett, J. C., Jr. (2011). Pro-B-type natriuretic peptide(1–108) circulates in the general community: Plasma determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology, 57, 1386–1395.

    Article  PubMed  CAS  Google Scholar 

  13. Costello-Boerrigter, L. C., Boerrigter, G., Redfield, M. M., Rodeheffer, R. J., Urban, L. H., Mahoney, D. W., Jacobsen, S. J., Heublein, D. M., & Burnett, J. C., Jr. (2006). Amino-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide in the general community: Determinants and detection of left ventricular dysfunction. Journal of the American College of Cardiology, 47, 345–353.

    Article  PubMed  CAS  Google Scholar 

  14. Redfield, M. M., Rodeheffer, R. J., Jacobsen, S. J., Mahoney, D. W., Bailey, K. R., & Burnett, J. C., Jr. (2002). Plasma brain natriuretic peptide concentration: Impact of age and gender. Journal of the American College of Cardiology, 40, 976–982.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshimura, M., Yasue, H., & Ogawa, H. (2001). Pathophysiological significance and clinical application of ANP and BNP in patients with heart failure. Canadian Journal of Physiology and Pharmacology, 79, 730–735.

    Article  PubMed  CAS  Google Scholar 

  16. Morgenthaler, N. G., Struck, J., Thomas, B., & Bergmann, A. (2004). Immunoluminometric assay for the midregion of pro-atrial natriuretic peptide in human plasma. Clinical Chemistry, 50, 234–236.

    Article  PubMed  CAS  Google Scholar 

  17. Moertl, D., Berger, R., Struck, J., Gleiss, A., Hammer, A., Morgenthaler, N. G., Bergmann, A., Huelsmann, M., & Pacher, R. (2009). Comparison of midregional pro-atrial and B-type natriuretic peptides in chronic heart failure: Influencing factors, detection of left ventricular systolic dysfunction, and prediction of death. Journal of the American College of Cardiology, 53, 1783–1790.

    Article  PubMed  CAS  Google Scholar 

  18. von Haehling, S., Jankowska, E. A., Morgenthaler, N. G., Vassanelli, C., Zanolla, L., Rozentryt, P., Filippatos, G. S., Doehner, W., Koehler, F., Papassotiriou, J., Kremastinos, D. T., Banasiak, W., Struck, J., Ponikowski, P., Bergmann, A., & Anker, S. D. (2007). Comparison of midregional pro-atrial natriuretic peptide with N-terminal pro-B-type natriuretic peptide in predicting survival in patients with chronic heart failure. Journal of the American College of Cardiology, 50, 1973–1980.

    Article  CAS  Google Scholar 

  19. Weinberg, E. O., Shimpo, M., De Keulenaer, G. W., MacGillivray, C., Tominaga, S., Solomon, S. D., Rouleau, J. L., & Lee, R. T. (2002). Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation, 106, 2961–2966.

    Article  PubMed  CAS  Google Scholar 

  20. Sanada, S., Hakuno, D., Higgins, L. J., Schreiter, E. R., McKenzie, A. N., & Lee, R. T. (2007). IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. Journal of Clinical Investigation, 117, 1538–1549.

    Article  PubMed  CAS  Google Scholar 

  21. Pascual-Figal, D. A., Ordonez-Llanos, J., Tornel, P. L., Vazquez, R., Puig, T., Valdes, M., Cinca, J., de Luna, A. B., Bayes-Genis, A., & Investigators, M. (2009). Soluble ST2 for predicting sudden cardiac death in patients with chronic heart failure and left ventricular systolic dysfunction. Journal of the American College of Cardiology, 54, 2174–2179.

    Article  PubMed  CAS  Google Scholar 

  22. Ky, B., French, B., McCloskey, K., Rame, J. E., McIntosh, E., Shahi, P., Dries, D. L., Tang, W. H., Wu, A. H., Fang, J. C., Boxer, R., Sweitzer, N. K., Levy, W. C., Goldberg, L. R., Jessup, M., & Cappola, T. P. (2011). High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circulation. Heart Failure, 4, 180–187.

    Article  PubMed  Google Scholar 

  23. Shah, R. V., Chen-Tournoux, A. A., Picard, M. H., van Kimmenade, R. R., & Januzzi, J. L. (2009). Serum levels of the interleukin-1 receptor family member ST2, cardiac structure and function, and long-term mortality in patients with acute dyspnea. Circulation. Heart Failure, 2, 311–319.

    Article  PubMed  CAS  Google Scholar 

  24. Jungbauer, C. G., Riedlinger, J., Buchner, S., Birner, C., Resch, M., Lubnow, M., Debl, K., Buesing, M., Huedig, H., Riegger, G., & Luchner, A. (2011). High-sensitive troponin T in chronic heart failure correlates with severity of symptoms, left ventricular dysfunction and prognosis independently from N-terminal pro-B-type natriuretic peptide. Clinical Chemistry and Laboratory Medicine, 49, 1899–1906.

    Article  PubMed  CAS  Google Scholar 

  25. Sato, Y., Fujiwara, H., & Takatsu, Y. (2012). Cardiac troponin and heart failure in the era of high-sensitivity assays. Journal of Cardiology, 60, 160–167.

    Article  PubMed  Google Scholar 

  26. Schaap, F. G., van der Vusse, G. J., & Glatz, J. F. (1998). Fatty acid-binding proteins in the heart. Molecular and Cellular Biochemistry, 180, 43–51.

    Article  PubMed  CAS  Google Scholar 

  27. Niizeki, T., Takeishi, Y., Arimoto, T., Takabatake, N., Nozaki, N., Hirono, O., Watanabe, T., Nitobe, J., Harada, M., Suzuki, S., Koyama, Y., Kitahara, T., Sasaki, T., & Kubota, I. (2007). Heart-type fatty acid-binding protein is more sensitive than troponin T to detect the ongoing myocardial damage in chronic heart failure patients. Journal of Cardiac Failure, 13, 120–127.

    Article  PubMed  CAS  Google Scholar 

  28. Setsuta, K., Seino, Y., Ogawa, T., Arao, M., Miyatake, Y., & Takano, T. (2002). Use of cytosolic and myofibril markers in the detection of ongoing myocardial damage in patients with chronic heart failure. American Journal of Medicine, 113, 717–722.

    Article  PubMed  CAS  Google Scholar 

  29. Arimoto, T., Takeishi, Y., Shiga, R., Fukui, A., Tachibana, H., Nozaki, N., Hirono, O., Nitobe, J., Miyamoto, T., Hoit, B. D., & Kubota, I. (2005). Prognostic value of elevated circulating heart-type fatty acid binding protein in patients with congestive heart failure. Journal of Cardiac Failure, 11, 56–60.

    Article  PubMed  CAS  Google Scholar 

  30. Niessner, A., Hohensinner, P. J., Rychli, K., Neuhold, S., Zorn, G., Richter, B., Hulsmann, M., Berger, R., Mortl, D., Huber, K., Wojta, J., & Pacher, R. (2009). Prognostic value of apoptosis markers in advanced heart failure patients. European Heart Journal, 30, 789–796.

    Article  PubMed  CAS  Google Scholar 

  31. Kinugawa, T., Kato, M., Yamamoto, K., Hisatome, I., & Nohara, R. (2012). Proinflammatory cytokine activation is linked to apoptotic mediator, soluble fas level in patients with chronic heart failure. International Heart Journal, 53, 182–186.

    Article  PubMed  CAS  Google Scholar 

  32. McPherron, A. C., Lawler, A. M., & Lee, S. J. (1997). Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature, 387, 83–90.

    Article  PubMed  CAS  Google Scholar 

  33. George, I., Bish, L. T., Kamalakkannan, G., Petrilli, C. M., Oz, M. C., Naka, Y., Sweeney, H. L., & Maybaum, S. (2010). Myostatin activation in patients with advanced heart failure and after mechanical unloading. European Journal of Heart Failure, 12, 444–453.

    Article  PubMed  CAS  Google Scholar 

  34. Sharma, M., Kambadur, R., Matthews, K. G., Somers, W. G., Devlin, G. P., Conaglen, J. V., Fowke, P. J., & Bass, J. J. (1999). Myostatin, a transforming growth factor-beta superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct. Journal of Cellular Physiology, 180, 1–9.

    Article  PubMed  CAS  Google Scholar 

  35. Gruson, D., Ahn, S. A., Ketelslegers, J. M., & Rousseau, M. F. (2011). Increased plasma myostatin in heart failure. European Journal of Heart Failure, 13, 734–736.

    Article  PubMed  CAS  Google Scholar 

  36. Thomas, C. V., Coker, M. L., Zellner, J. L., Handy, J. R., Crumbley, A. J., 3rd, & Spinale, F. G. (1998). Increased matrix metalloproteinase activity and selective upregulation in lv myocardium from patients with end-stage dilated cardiomyopathy. Circulation, 97, 1708–1715.

    Article  PubMed  CAS  Google Scholar 

  37. Spinale, F. G., Coker, M. L., Heung, L. J., Bond, B. R., Gunasinghe, H. R., Etoh, T., Goldberg, A. T., Zellner, J. L., & Crumbley, A. J. (2000). A matrix metalloproteinase induction/activation system exists in the human left ventricular myocardium and is upregulated in heart failure. Circulation, 102, 1944–1949.

    Article  PubMed  CAS  Google Scholar 

  38. Eckhouse, S. R., & Spinale, F. G. (2012). Changes in the myocardial interstitium and contribution to the progression of heart failure. Heart Failure Clinics, 8, 7–20.

    Article  PubMed  Google Scholar 

  39. Spinale, F. G. (2007). Myocardial matrix remodeling and the matrix metalloproteinases: Influence on cardiac form and function. Physiological Reviews, 87, 1285–1342.

    Article  PubMed  CAS  Google Scholar 

  40. Li, Y. Y., Feldman, A. M., Sun, Y., & McTiernan, C. F. (1998). Differential expression of tissue inhibitors of metalloproteinases in the failing human heart. Circulation, 98, 1728–1734.

    Article  PubMed  CAS  Google Scholar 

  41. Cicoira, M., Rossi, A., Bonapace, S., Zanolla, L., Golia, G., Franceschini, L., Caruso, B., Marino, P. N., & Zardini, P. (2004). Independent and additional prognostic value of aminoterminal propeptide of type III procollagen circulating levels in patients with chronic heart failure. Journal of Cardiac Failure, 10, 403–411.

    Article  PubMed  CAS  Google Scholar 

  42. Sundstrom, J., Evans, J. C., Benjamin, E. J., Levy, D., Larson, M. G., Sawyer, D. B., Siwik, D. A., Colucci, W. S., Wilson, P. W., & Vasan, R. S. (2004). Relations of plasma total TIMP-1 levels to cardiovascular risk factors and echocardiographic measures: The Framingham Heart Study. European Heart Journal, 25, 1509–1516.

    Article  PubMed  CAS  Google Scholar 

  43. Bruggink, A. H., van Oosterhout, M. F., de Jonge, N., Ivangh, B., van Kuik, J., Voorbij, R. H., Cleutjens, J. P., Gmelig-Meyling, F. H., & de Weger, R. A. (2006). Reverse remodeling of the myocardial extracellular matrix after prolonged left ventricular assist device support follows a biphasic pattern. The Journal of Heart and Lung Transplantation, 25, 1091–1098.

    Article  PubMed  Google Scholar 

  44. Liu, Y. H., D'Ambrosio, M., Liao, T. D., Peng, H., Rhaleb, N. E., Sharma, U., Andre, S., Gabius, H. J., & Carretero, O. A. (2009). N-acetyl-seryl-aspartyl-lysyl-proline prevents cardiac remodeling and dysfunction induced by galectin-3, a mammalian adhesion/growth-regulatory lectin. American Journal of Physiology - Heart and Circulatory Physiology, 296, H404–H412.

    Article  PubMed  CAS  Google Scholar 

  45. Sharma, U. C., Pokharel, S., van Brakel, T. J., van Berlo, J. H., Cleutjens, J. P., Schroen, B., Andre, S., Crijns, H. J., Gabius, H. J., Maessen, J., & Pinto, Y. M. (2004). Galectin-3 marks activated macrophages in failure-prone hypertrophied hearts and contributes to cardiac dysfunction. Circulation, 110, 3121–3128.

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Andres, N., Rossignol, P., Iraqi, W., Fay, R., Nuee, J., Ghio, S., Cleland, J. G., Zannad, F., & Lacolley, P. (2012). Association of galectin-3 and fibrosis markers with long-term cardiovascular outcomes in patients with heart failure, left ventricular dysfunction, and dyssynchrony: Insights from the CARE-HF (Cardiac Resynchronization in Heart Failure) trial. European Journal of Heart Failure, 14, 74–81.

    Article  PubMed  CAS  Google Scholar 

  47. Lok, D. J., Lok, S. I., Bruggink-Andre de la Porte, P. W., Badings, E., Lipsic, E., van Wijngaarden, J., de Boer, R. A., van Veldhuisen, D. J., van der Meer, P. (2012). Galectin-3 is an independent marker for ventricular remodeling and mortality in patients with chronic heart failure. Clinical Research in Cardiology, 102, 103–110.

  48. Ho, J. E., Liu, C., Lyass, A., Courchesne, P., Pencina, M. J., Vasan, R. S., Larson, M. G., & Levy, D. (2012). Galectin-3, a marker of cardiac fibrosis, predicts incident heart failure in the community. Journal of the American College of Cardiology, 60, 1249–1256.

    Article  PubMed  CAS  Google Scholar 

  49. Levine, B., Kalman, J., Mayer, L., Fillit, H. M., & Packer, M. (1990). Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. The New England Journal of Medicine, 323, 236–241.

    Article  PubMed  CAS  Google Scholar 

  50. Mann, D. L. (2002). Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circulation Research, 91, 988–998.

    Article  PubMed  CAS  Google Scholar 

  51. Ren, M. Y., & Sui, S. J. (2012). The role of TWEAK/Fn14 in cardiac remodeling. Molecular Biology Reports, 39, 9971–9977.

    Article  PubMed  CAS  Google Scholar 

  52. Chorianopoulos, E., Rosenberg, M., Zugck, C., Wolf, J., Katus, H. A., & Frey, N. (2009). Decreased soluble TWEAK levels predict an adverse prognosis in patients with chronic stable heart failure. European Journal of Heart Failure, 11, 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  53. Richter, B., Rychli, K., Hohensinner, P. J., Berger, R., Mortl, D., Neuhold, S., Zorn, G., Huber, K., Maurer, G., Wojta, J., Pacher, R., Hulsmann, M., & Niessner, A. (2010). Differences in the predictive value of tumor necrosis factor-like weak inducer of apoptosis (TWEAK) in advanced ischemic and non-ischemic heart failure. Atherosclerosis, 213, 545–548.

    Article  PubMed  CAS  Google Scholar 

  54. Ueland, T., Yndestad, A., Oie, E., Florholmen, G., Halvorsen, B., Froland, S. S., Simonsen, S., Christensen, G., Gullestad, L., & Aukrust, P. (2005). Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation, 111, 2461–2468.

    Article  PubMed  CAS  Google Scholar 

  55. Roysland, R., Masson, S., Omland, T., Milani, V., Bjerre, M., Flyvbjerg, A., Di Tano, G., Misuraca, G., Maggioni, A. P., Tognoni, G., Tavazzi, L., Latini, R., & Investigators, G.-H. (2010). Prognostic value of osteoprotegerin in chronic heart failure: The GISSI-HF trial. American Heart Journal, 160, 286–293.

    Article  PubMed  CAS  Google Scholar 

  56. Bottazzi, B., Doni, A., Garlanda, C., & Mantovani, A. (2010). An integrated view of humoral innate immunity: Pentraxins as a paradigm. Annual Review of Immunology, 28, 157–183.

    Article  PubMed  CAS  Google Scholar 

  57. Latini, R., Gullestad, L., Masson, S., Nymo, S. H., Ueland, T., Cuccovillo, I., Vardal, M., Bottazzi, B., Mantovani, A., Lucci, D., Masuda, N., Sudo, Y., Wikstrand, J., Tognoni, G., Aukrust, P., Tavazzi, L., et al. (2012). Pentraxin-3 in chronic heart failure: The CORONA and GISSI-HF trials. European Journal of Heart Failure, 14, 992–999.

    Article  PubMed  CAS  Google Scholar 

  58. Suzuki, S., Takeishi, Y., Niizeki, T., Koyama, Y., Kitahara, T., Sasaki, T., Sagara, M., & Kubota, I. (2008). Pentraxin 3, a new marker for vascular inflammation, predicts adverse clinical outcomes in patients with heart failure. American Heart Journal, 155, 75–81.

    Article  PubMed  CAS  Google Scholar 

  59. Tsutamoto, T., Wada, A., Maeda, K., Mabuchi, N., Hayashi, M., Tsutsui, T., Ohnishi, M., Fujii, M., Matsumoto, T., Yamamoto, T., Wang, X., Asai, S., Tsuji, T., Tanaka, H., Saito, Y., Kuwahara, K., Nakao, K., & Kinoshita, M. (2001). Relationship between plasma level of cardiotrophin-1 and left ventricular mass index in patients with dilated cardiomyopathy. Journal of the American College of Cardiology, 38, 1485–1490.

    Article  PubMed  CAS  Google Scholar 

  60. Braunwald, E. (2008). Biomarkers in heart failure. The New England Journal of Medicine, 358, 2148–2159.

    Article  PubMed  CAS  Google Scholar 

  61. Steinberg, S. F. (2013). Oxidative stress and sarcomeric proteins. Circulation Research, 112, 393–405.

    Article  PubMed  CAS  Google Scholar 

  62. Vasilyev, N., Williams, T., Brennan, M. L., Unzek, S., Zhou, X., Heinecke, J. W., Spitz, D. R., Topol, E. J., Hazen, S. L., & Penn, M. S. (2005). Myeloperoxidase-generated oxidants modulate left ventricular remodeling but not infarct size after myocardial infarction. Circulation, 112, 2812–2820.

    Article  PubMed  CAS  Google Scholar 

  63. Nicholls, S. J., & Hazen, S. L. (2005). Myeloperoxidase and cardiovascular disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 1102–1111.

    Article  PubMed  CAS  Google Scholar 

  64. Tang, W. H., Tong, W., Troughton, R. W., Martin, M. G., Shrestha, K., Borowski, A., Jasper, S., Hazen, S. L., & Klein, A. L. (2007). Prognostic value and echocardiographic determinants of plasma myeloperoxidase levels in chronic heart failure. Journal of the American College of Cardiology, 49, 2364–2370.

    Article  PubMed  CAS  Google Scholar 

  65. Andreou, I., Tousoulis, D., Miliou, A., Tentolouris, C., Zisimos, K., Gounari, P., Siasos, G., Papageorgiou, N., Papadimitriou, C. A., Dimopoulos, M. A., & Stefanadis, C. (2010). Effects of rosuvastatin on myeloperoxidase levels in patients with chronic heart failure: A randomized placebo-controlled study. Atherosclerosis, 210, 194–198.

    Article  PubMed  CAS  Google Scholar 

  66. Tsutamoto, T., Wada, A., Matsumoto, T., Maeda, K., Mabuchi, N., Hayashi, M., Tsutsui, T., Ohnishi, M., Sawaki, M., Fujii, M., Yamamoto, T., Horie, H., Sugimoto, Y., & Kinoshita, M. (2001). Relationship between tumor necrosis factor-alpha production and oxidative stress in the failing hearts of patients with dilated cardiomyopathy. Journal of the American College of Cardiology, 37, 2086–2092.

    Article  PubMed  CAS  Google Scholar 

  67. Yamaji, M., Tsutamoto, T., Kawahara, C., Nishiyama, K., Yamamoto, T., Fujii, M., & Horie, M. (2009). Serum cortisol as a useful predictor of cardiac events in patients with chronic heart failure: The impact of oxidative stress. Circulation. Heart Failure, 2, 608–615.

    Article  PubMed  CAS  Google Scholar 

  68. Tsutsui, T., Tsutamoto, T., Wada, A., Maeda, K., Mabuchi, N., Hayashi, M., Ohnishi, M., & Kinoshita, M. (2002). Plasma oxidized low-density lipoprotein as a prognostic predictor in patients with chronic congestive heart failure. Journal of the American College of Cardiology, 39, 957–962.

    Article  PubMed  CAS  Google Scholar 

  69. Taegtmeyer, H. (2004). Cardiac metabolism as a target for the treatment of heart failure. Circulation, 110, 894–896.

    Article  PubMed  Google Scholar 

  70. Neubauer, S. (2007). The failing heart—An engine out of fuel. The New England Journal of Medicine, 356, 1140–1151.

    Article  PubMed  Google Scholar 

  71. Biolo, A., Shibata, R., Ouchi, N., Kihara, S., Sonoda, M., Walsh, K., & Sam, F. (2010). Determinants of adiponectin levels in patients with chronic systolic heart failure. The American Journal of Cardiology, 105, 1147–1152.

    Article  PubMed  CAS  Google Scholar 

  72. Frankel, D. S., Vasan, R. S., D'Agostino, R. B., Sr., Benjamin, E. J., Levy, D., Wang, T. J., & Meigs, J. B. (2009). Resistin, adiponectin, and risk of heart failure the Framingham offspring study. Journal of the American College of Cardiology, 53, 754–762.

    Article  PubMed  CAS  Google Scholar 

  73. Nanayakkara, G., Kariharan, T., Wang, L., Zhong, J., & Amin, R. (2012). The cardio-protective signaling and mechanisms of adiponectin. Am J Cardiovasc Dis., 2, 253–266.

    PubMed  CAS  Google Scholar 

  74. Khan, R. S., Kato, T. S., Chokshi, A., Chew, M., Yu, S., Wu, C., Singh, P., Cheema, F. H., Takayama, H., Harris, C., Reyes-Soffer, G., Knoll, R., Milting, H., Naka, Y., Mancini, D., & Schulze, P. C. (2012). Adipose tissue inflammation and adiponectin resistance in patients with advanced heart failure: Correction after ventricular assist device implantation. Circulation. Heart Failure, 5, 340–348.

    Article  PubMed  CAS  Google Scholar 

  75. Schulze, P. C., Biolo, A., Gopal, D., Shahzad, K., Balog, J., Fish, M., Siwik, D., & Colucci, W. S. (2011). Dynamics in insulin resistance and plasma levels of adipokines in patients with acute decompensated and chronic stable heart failure. Journal of Cardiac Failure, 17, 1004–1011.

    Article  PubMed  CAS  Google Scholar 

  76. Hopkins, T. A., Ouchi, N., Shibata, R., & Walsh, K. (2007). Adiponectin actions in the cardiovascular system. Cardiovascular Research, 74, 11–18.

    Article  PubMed  CAS  Google Scholar 

  77. Hotta, K., Funahashi, T., Arita, Y., Takahashi, M., Matsuda, M., Okamoto, Y., Iwahashi, H., Kuriyama, H., Ouchi, N., Maeda, K., Nishida, M., Kihara, S., Sakai, N., Nakajima, T., Hasegawa, K., Muraguchi, M., Ohmoto, Y., Nakamura, T., Yamashita, S., Hanafusa, T., & Matsuzawa, Y. (2000). Plasma concentrations of a novel, adipose-specific protein, adiponectin, in type 2 diabetic patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 1595–1599.

    Article  PubMed  CAS  Google Scholar 

  78. Iwashima, Y., Katsuya, T., Ishikawa, K., Ouchi, N., Ohishi, M., Sugimoto, K., Fu, Y., Motone, M., Yamamoto, K., Matsuo, A., Ohashi, K., Kihara, S., Funahashi, T., Rakugi, H., Matsuzawa, Y., & Ogihara, T. (2004). Hypoadiponectinemia is an independent risk factor for hypertension. Hypertension, 43, 1318–1323.

    Article  PubMed  CAS  Google Scholar 

  79. Kumada, M., Kihara, S., Sumitsuji, S., Kawamoto, T., Matsumoto, S., Ouchi, N., Arita, Y., Okamoto, Y., Shimomura, I., Hiraoka, H., Nakamura, T., Funahashi, T., Matsuzawa, Y., & for the Osaka CAD Study Group. (2003). Association of hypoadiponectinemia with coronary artery disease in men. Arterioscler Thromb Vasc Biol., 23, 85–89.

    Article  PubMed  CAS  Google Scholar 

  80. Kistorp, C., Faber, J., Galatius, S., Gustafsson, F., Frystyk, J., Flyvbjerg, A., & Hildebrandt, P. (2005). Plasma adiponectin, body mass index, and mortality in patients with chronic heart failure. Circulation, 112, 1756–1762.

    Article  PubMed  CAS  Google Scholar 

  81. Haugen, E., Furukawa, Y., Isic, A., & Fu, M. (2008). Increased adiponectin level in parallel with increased NT-pro BNP in patients with severe heart failure in the elderly: A hospital cohort study. International Journal of Cardiology, 125, 216–219.

    Article  PubMed  Google Scholar 

  82. George, J., Patal, S., Wexler, D., Sharabi, Y., Peleg, E., Kamari, Y., Grossman, E., Sheps, D., Keren, G., & Roth, A. (2006). Circulating adiponectin concentrations in patients with congestive heart failure. Heart, 92, 1420–1424.

    Article  PubMed  CAS  Google Scholar 

  83. Takano, H., Obata, J. E., Kodama, Y., Kitta, Y., Nakamura, T., Mende, A., Kawabata, K., Saito, Y., Fujioka, D., Kobayashi, T., Yano, T., Sano, K., & Kugiyama, K. (2009). Adiponectin is released from the heart in patients with heart failure. International Journal of Cardiology, 132, 221–226.

    Article  PubMed  Google Scholar 

  84. Potocki, M., Ziller, R., & Mueller, C. (2012). Mid-regional pro-adrenomedullin in acute heart failure: A better biomarker or just another biomarker? Current Heart Failure Reports, 9, 244–251.

    Article  PubMed  CAS  Google Scholar 

  85. Adlbrecht, C., Hulsmann, M., Strunk, G., Berger, R., Mortl, D., Struck, J., Morgenthaler, N. G., Bergmann, A., Jakowitsch, J., Maurer, G., Lang, I. M., & Pacher, R. (2009). Prognostic value of plasma midregional pro-adrenomedullin and C-terminal-pro-endothelin-1 in chronic heart failure outpatients. European Journal of Heart Failure, 11, 361–366.

    Article  PubMed  CAS  Google Scholar 

  86. Neuhold, S., Huelsmann, M., Strunk, G., Stoiser, B., Struck, J., Morgenthaler, N. G., Bergmann, A., Moertl, D., Berger, R., & Pacher, R. (2008). Comparison of copeptin, B-type natriuretic peptide, and amino-terminal pro-B-type natriuretic peptide in patients with chronic heart failure: Prediction of death at different stages of the disease. Journal of the American College of Cardiology, 52, 266–272.

    Article  PubMed  CAS  Google Scholar 

  87. Voors, A. A., von Haehling, S., Anker, S. D., Hillege, H. L., Struck, J., Hartmann, O., Bergmann, A., Squire, I., van Veldhuisen, D. J., Dickstein, K., & Investigators, O. (2009). C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. European Heart Journal, 30, 1187–1194.

    Article  PubMed  CAS  Google Scholar 

  88. Carubelli, V., Metra, M., Lombardi, C., Bettari, L., Bugatti, S., Lazzarini, V., & Dei, C. L. (2012). Renal dysfunction in acute heart failure: Epidemiology, mechanisms and assessment. Hear Fail Rev, 17, 271–282.

    Article  CAS  Google Scholar 

  89. Schmidt-Ott, K. M., Mori, K., Li, J. Y., Kalandadze, A., Cohen, D. J., Devarajan, P., & Barasch, J. (2007). Dual action of neutrophil gelatinase-associated lipocalin. Journal of the American Society of Nephrology, 18, 407–413.

    Article  PubMed  CAS  Google Scholar 

  90. Maisel, A. S., Mueller, C., Fitzgerald, R., Brikhan, R., Hiestand, B. C., Iqbal, N., Clopton, P., & van Veldhuisen, D. J. (2011). Prognostic utility of plasma neutrophil gelatinase-associated lipocalin in patients with acute heart failure: The NGAL EvaLuation Along with B-type NaTriuretic Peptide in acutely decompensated heart failure (GALLANT) trial. European Journal of Heart Failure, 13, 846–851.

    Article  PubMed  CAS  Google Scholar 

  91. Shrestha, K., Shao, Z., Singh, D., Dupont, M., & Tang, W. H. (2012). Relation of systemic and urinary neutrophil gelatinase-associated lipocalin levels to different aspects of impaired renal function in patients with acute decompensated heart failure. The American Journal of Cardiology, 110, 1329–1335.

    Article  PubMed  CAS  Google Scholar 

  92. Shrestha, K., Borowski, A. G., Troughton, R. W., Klein, A. L., & Tang, W. H. (2012). Association between systemic neutrophil gelatinase-associated lipocalin and anemia, relative hypochromia, and inflammation in chronic systolic heart failure. Congestive Heart Failure, 18, 239–244.

    Article  PubMed  CAS  Google Scholar 

  93. Chen, H. H. (2011). Beta-trace protein versus cystatin C: Which is a better surrogate marker of renal function versus prognostic indicator in cardiovascular diseases? Journal of the American College of Cardiology, 57, 859–860.

    Article  PubMed  Google Scholar 

  94. Damman, K., Van Veldhuisen, D. J., Navis, G., Vaidya, V. S., Smilde, T. D., Westenbrink, B. D., Bonventre, J. V., Voors, A. A., & Hillege, H. L. (2010). Tubular damage in chronic systolic heart failure is associated with reduced survival independent of glomerular filtration rate. Heart, 96, 1297–1302.

    Article  PubMed  CAS  Google Scholar 

  95. Wang, T. J., Wollert, K. C., Larson, M. G., Coglianese, E., McCabe, E. L., Cheng, S., Ho, J. E., Fradley, M. G., Ghorbani, A., Xanthakis, V., Kempf, T., Benjamin, E. J., Levy, D., Vasan, R. S., & Januzzi, J. L. (2012). Prognostic utility of novel biomarkers of cardiovascular stress: The Framingham Heart Study. Circulation, 126, 1596–1604.

    Article  PubMed  CAS  Google Scholar 

  96. Lok, S. I., Winkens, B., Goldschmeding, R., van Geffen, A. J., Nous, F. M., van Kuik, J., van der Weide, P., Klopping, C., Kirkels, J. H., Lahpor, J. R., Doevendans, P. A., de Jonge, N., & de Weger, R. A. (2012). Circulating growth differentiation factor-15 correlates with myocardial fibrosis in patients with non-ischaemic dilated cardiomyopathy and decreases rapidly after left ventricular assist device support. European Journal of Heart Failure, 14, 1249–1256.

    Article  PubMed  CAS  Google Scholar 

  97. Kawabata, D., Tanaka, M., Fujii, T., Umehara, H., Fujita, Y., Yoshifuji, H., Mimori, T., & Ozaki, S. (2004). Ameliorative effects of follistatin-related protein/TSC-36/FSTL1 on joint inflammation in a mouse model of arthritis. Arthritis and Rheumatism, 50, 660–668.

    Article  PubMed  CAS  Google Scholar 

  98. Le Luduec, J. B., Condamine, T., Louvet, C., Thebault, P., Heslan, J. M., Heslan, M., Chiffoleau, E., & Cuturi, M. C. (2008). An immunomodulatory role for follistatin-like 1 in heart allograft transplantation. American Journal of Transplantation, 8, 2297–2306.

    Article  PubMed  CAS  Google Scholar 

  99. Miyamae, T., Marinov, A. D., Sowders, D., Wilson, D. C., Devlin, J., Boudreau, R., Robbins, P., & Hirsch, R. (2006). Follistatin-like protein-1 is a novel proinflammatory molecule. Journal of Immunology, 177, 4758–4762.

    CAS  Google Scholar 

  100. El-Armouche, A., Ouchi, N., Tanaka, K., Doros, G., Wittkopper, K., Schulze, T., Eschenhagen, T., Walsh, K., & Sam, F. (2011). Follistatin-like 1 in chronic systolic heart failure: A marker of left ventricular remodeling. Circulation. Heart Failure, 4, 621–627.

    Article  PubMed  Google Scholar 

  101. Lara-Pezzi, E., Felkin, L. E., Birks, E. J., Sarathchandra, P., Panse, K. D., George, R., Hall, J. L., Yacoub, M. H., Rosenthal, N., & Barton, P. J. (2008). Expression of follistatin-related genes is altered in heart failure. Endocrinology, 149, 5822–5827.

    Article  PubMed  CAS  Google Scholar 

  102. de Boer, R. A., Lok, D. J., Jaarsma, T., van der Meer, P., Voors, A. A., Hillege, H. L., & van Veldhuisen, D. J. (2011). Predictive value of plasma galectin-3 levels in heart failure with reduced and preserved ejection fraction. Annals of Medicine, 43, 60–68.

    Article  PubMed  CAS  Google Scholar 

  103. Grewal, J., McKelvie, R., Lonn, E., Tait, P., Carlsson, J., Gianni, M., Jarnert, C., & Persson, H. (2008). BNP and NT-proBNP predict echocardiographic severity of diastolic dysfunction. European Journal of Heart Failure, 10, 252–259.

    Article  PubMed  CAS  Google Scholar 

  104. Grewal, J., McKelvie, R. S., Persson, H., Tait, P., Carlsson, J., Swedberg, K., Ostergren, J., & Lonn, E. (2008). Usefulness of N-terminal pro-brain natriuretic peptide and brain natriuretic peptide to predict cardiovascular outcomes in patients with heart failure and preserved left ventricular ejection fraction. The American Journal of Cardiology, 102, 733–737.

    Article  PubMed  CAS  Google Scholar 

  105. Manzano-Fernandez, S., Mueller, T., Pascual-Figal, D., Truong, Q. A., & Januzzi, J. L. (2011). Usefulness of soluble concentrations of interleukin family member ST2 as predictor of mortality in patients with acutely decompensated heart failure relative to left ventricular ejection fraction. The American Journal of Cardiology, 107, 259–267.

    Article  PubMed  CAS  Google Scholar 

  106. Matsubara, J., Sugiyama, S., Nozaki, T., Sugamura, K., Konishi, M., Ohba, K., Matsuzawa, Y., Akiyama, E., Yamamoto, E., Sakamoto, K., Nagayoshi, Y., Kaikita, K., Sumida, H., Kim-Mitsuyama, S., & Ogawa, H. (2011). Pentraxin 3 is a new inflammatory marker correlated with left ventricular diastolic dysfunction and heart failure with normal ejection fraction. Journal of the American College of Cardiology, 57, 861–869.

    Article  PubMed  CAS  Google Scholar 

  107. McKelvie, R. S., Komajda, M., McMurray, J., Zile, M., Ptaszynska, A., Donovan, M., Carson, P., Massie, B. M., & Investigators, I. P. (2010). Baseline plasma NT-proBNP and clinical characteristics: Results from the irbesartan in heart failure with preserved ejection fraction trial. Journal of Cardiac Failure, 16, 128–134.

    Article  PubMed  CAS  Google Scholar 

  108. Chu, J. W., Jones, G. T., Tarr, G. P., Phillips, L. V., Wilkins, G. T., van Rij, A. M., Williams, M. J. (2012). Plasma active matrix metalloproteinase 9 and indices of diastolic function in patients with preserved systolic function. International Journal of Cardiology. doi:10.1016/j.ijcard.2012.03.147.

  109. Martos, R., Baugh, J., Ledwidge, M., O'Loughlin, C., Murphy, N. F., Conlon, C., Patle, A., Donnelly, S. C., & McDonald, K. (2009). Diagnosis of heart failure with preserved ejection fraction: Improved accuracy with the use of markers of collagen turnover. European Journal of Heart Failure, 11, 191–197.

    Article  PubMed  CAS  Google Scholar 

  110. Roysland, R., Bonaca, M. P., Omland, T., Sabatine, M., Murphy, S. A., Scirica, B. M., Bjerre, M., Flyvbjerg, A., Braunwald, E., & Morrow, D. A. (2012). Osteoprotegerin and cardiovascular mortality in patients with non-ST elevation acute coronary syndromes. Heart, 98, 786–791.

    Article  PubMed  Google Scholar 

  111. Ueland, T., Dahl, C. P., Kjekshus, J., Hulthe, J., Bohm, M., Mach, F., Goudev, A., Lindberg, M., Wikstrand, J., Aukrust, P., & Gullestad, L. (2011). Osteoprotegerin predicts progression of chronic heart failure: Results from CORONA. Circulation. Heart Failure, 4, 145–152.

    Article  PubMed  CAS  Google Scholar 

  112. Palladini, G., Barassi, A., Perlini, S., Milani, P., Foli, A., Russo, P., Albertini, R., Obici, L., Lavatelli, F., Sarais, G., Casarini, S., Moratti, R., Melzi d'Eril, G. V., & Merlini, G. (2011). Midregional proadrenomedullin (MR-proADM) is a powerful predictor of early death in AL amyloidosis. Amyloid., 18, 216–221.

    Article  PubMed  CAS  Google Scholar 

  113. Carlsson, A. C., Larsson, A., Helmersson-Karlqvist, J., Lind, L., Ingelsson, E., Larsson, T. E., Sundstrom, J., Arnlov, J. (2012). Urinary kidney injury molecule 1 and incidence of heart failure in elderly men. European Journal of Heart Failure, 15, 441–446.

    Google Scholar 

  114. Ky, B., French, B., Levy, W. C., Sweitzer, N. K., Fang, J. C., Wu, A. H., Goldberg, L. R., Jessup, M., & Cappola, T. P. (2012). Multiple biomarkers for risk prediction in chronic heart failure. Circulation. Heart Failure, 5, 183–190.

    Article  PubMed  CAS  Google Scholar 

  115. Tanaka, K., Essick, E. E., Doros, G., Tanriverdi, K., Connors, L. H., Seldin, D. C., Sam, F. (2013). Circulating matrix metalloproteinases and tissue inhibitors of metalloproteinases in cardiac amyloidosis. Journal of the American Heart Association, 2(2), e005868. doi:10.1161/JAHA.112.005868.

  116. Amir, O., Rogowski, O., David, M., Lahat, N., Wolff, R., & Lewis, B. S. (2010). Circulating interleukin-10: Association with higher mortality in systolic heart failure patients with elevated tumor necrosis factor-alpha. The Israel Medical Association Journal, 12, 158–162.

    PubMed  Google Scholar 

  117. Miettinen, K. H., Lassus, J., Harjola, V. P., Siirila-Waris, K., Melin, J., Punnonen, K. R., Nieminen, M. S., Laakso, M., & Peuhkurinen, K. J. (2008). Prognostic role of pro- and anti-inflammatory cytokines and their polymorphisms in acute decompensated heart failure. European Journal of Heart Failure, 10, 396–403.

    Article  PubMed  CAS  Google Scholar 

  118. Savic-Radojevic, A., Radovanovic, S., Pekmezovic, T., Pljesa-Ercegovac, M., Simic, D., Djukic, T., Matic, M., Simic, T. (2013). The role of serum VCAM-1 and TNF-alpha as predictors of mortality and morbidity in patients with chronic heart failure. Journal of Clinical Laboratory Analysis, 27, 105–112.

    Google Scholar 

  119. De Gennaro, L., Brunetti, N. D., Cuculo, A., Pellegrino, P. L., & Di Biase, M. (2008). Systemic inflammation in nonischemic dilated cardiomyopathy. Hear Vessel, 23, 445–450.

    Article  Google Scholar 

  120. Matsumoto, M., Tsujino, T., Lee-Kawabata, M., Naito, Y., Sakoda, T., Ohyanagi, M., & Masuyama, T. (2010). Serum interleukin-6 and C-reactive protein are markedly elevated in acute decompensated heart failure patients with left ventricular systolic dysfunction. Cytokine, 49, 264–268.

    Article  PubMed  CAS  Google Scholar 

  121. Kosar, F., Aksoy, Y., Ozguntekin, G., Ozerol, I., & Varol, E. (2006). Relationship between cytokines and tumour markers in patients with chronic heart failure. European Journal of Heart Failure, 8, 270–274.

    Article  PubMed  CAS  Google Scholar 

  122. Wykretowicz, A., Furmaniuk, J., Smielecki, J., Deskur-Smielecka, E., Szczepanik, A., Banaszak, A., & Wysocki, H. (2004). The oxygen stress index and levels of circulating interleukin-10 and interleukin-6 in patients with chronic heart failure. International Journal of Cardiology, 94, 283–287.

    Article  PubMed  Google Scholar 

  123. Eslick, G. D., Thampan, B. V., Nalos, M., McLean, A. S., & Sluyter, R. (2009). Circulating interleukin-18 concentrations and a loss-of-function P2X7 polymorphism in heart failure. International Journal of Cardiology, 137, 81–83.

    Article  PubMed  Google Scholar 

  124. Naito, Y., Tsujino, T., Fujioka, Y., Ohyanagi, M., Okamura, H., & Iwasaki, T. (2002). Increased circulating interleukin-18 in patients with congestive heart failure. Heart, 88, 296–297.

    Article  PubMed  CAS  Google Scholar 

  125. Yamaoka-Tojo, M., Tojo, T., Inomata, T., Machida, Y., Osada, K., & Izumi, T. (2002). Circulating levels of interleukin 18 reflect etiologies of heart failure: Th1/Th2 cytokine imbalance exaggerates the pathophysiology of advanced heart failure. Journal of Cardiac Failure, 8, 21–27.

    Article  PubMed  CAS  Google Scholar 

  126. Osmancik, P., Teringova, E., Tousek, P., Paulu, P., & Widimsky, P. (2013). Prognostic value of TNF-related apoptosis inducing ligand (TRAIL) in acute coronary syndrome patients. PLoS One, 8, e53860.

    Article  PubMed  CAS  Google Scholar 

  127. Francis, G. S., Benedict, C., Johnstone, D. E., Kirlin, P. C., Nicklas, J., Liang, C. S., Kubo, S. H., Rudin-Toretsky, E., & Yusuf, S. (1990). Comparison of neuroendocrine activation in patients with left ventricular dysfunction with and without congestive heart failure. A substudy of the Studies of Left Ventricular Dysfunction (SOLVD). Circulation, 82, 1724–1729.

    Article  PubMed  CAS  Google Scholar 

  128. Latini, R., Masson, S., Anand, I., Salio, M., Hester, A., Judd, D., Barlera, S., Maggioni, A. P., Tognoni, G., Cohn, J. N., & Val-He, F. T. I. (2004). The comparative prognostic value of plasma neurohormones at baseline in patients with heart failure enrolled in Val-HeFT. European Heart Journal, 25, 292–299.

    Article  PubMed  CAS  Google Scholar 

  129. Vergaro, G., Emdin, M., Iervasi, A., Zyw, L., Gabutti, A., Poletti, R., Mammini, C., Giannoni, A., Fontana, M., & Passino, C. (2011). Prognostic value of plasma renin activity in heart failure. The American Journal of Cardiology, 108, 246–251.

    Article  PubMed  CAS  Google Scholar 

  130. Vantrimpont, P., Rouleau, J. L., Ciampi, A., Harel, F., de Champlain, J., Bichet, D., Moye, L. A., & Pfeffer, M. (1998). Two-year time course and significance of neurohumoral activation in the Survival and Ventricular Enlargement (SAVE) Study. European Heart Journal, 19, 1552–1563.

    Article  PubMed  CAS  Google Scholar 

  131. Cicoira, M., Zanolla, L., Franceschini, L., Rossi, A., Golia, G., Zeni, P., Caruso, B., & Zardini, P. (2002). Relation of aldosterone “escape” despite angiotensin-converting enzyme inhibitor administration to impaired exercise capacity in chronic congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. The American Journal of Cardiology, 89, 403–407.

    Article  PubMed  CAS  Google Scholar 

  132. Roig, E., Perez-Villa, F., Morales, M., Jimenez, W., Orus, J., Heras, M., & Sanz, G. (2000). Clinical implications of increased plasma angiotensin ii despite ace inhibitor therapy in patients with congestive heart failure. European Heart Journal, 21, 53–57.

    Article  PubMed  CAS  Google Scholar 

  133. Goldsmith, S. R., Francis, G. S., Cowley, A. W., Jr., Levine, T. B., & Cohn, J. N. (1983). Increased plasma arginine vasopressin levels in patients with congestive heart failure. Journal of the American College of Cardiology, 1, 1385–1390.

    Article  PubMed  CAS  Google Scholar 

  134. Szatalowicz, V. L., Arnold, P. E., Chaimovitz, C., Bichet, D., Berl, T., & Schrier, R. W. (1981). Radioimmunoassay of plasma arginine vasopressin in hyponatremic patients with congestive heart failure. The New England Journal of Medicine, 305, 263–266.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flora Sam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gopal, D.M., Sam, F. New and Emerging Biomarkers in Left Ventricular Systolic Dysfunction—Insight into Dilated Cardiomyopathy. J. of Cardiovasc. Trans. Res. 6, 516–527 (2013). https://doi.org/10.1007/s12265-013-9462-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-013-9462-3

Keywords

Navigation