Skip to main content

Advertisement

Log in

Crosstalk Between the Renin–Angiotensin System and the Advance Glycation End Product Axis in the Heart: Role of the Cardiac Fibroblast

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts (CFs) are involved in maintaining extracellular matrix (ECM) homeostasis in the heart. CFs mediate responses to hormonal and mechanical stimuli and relay these to other local cell types through release of autocrine and/or paracrine factors. CFs also play important roles in the setting of injury, i.e., myocardial infarction, where ECM production is key to efficient scarring. However, conditions exist in which excess production of ECM by CFs can lead to cardiac fibrosis. Two important pathways known to be involved in development of cardiac fibrosis are renin–angiotensin system (RAS) and advanced glycation end products (AGE) receptor (RAGE) signaling cascades. This report summarizes actions of these two pathways on function of CFs. Because cardiac fibrosis is an important component of diabetic cardiomyopathy, we include new data that suggests a possible crosstalk between the RAS and AGE/RAGE pathway in order to activate CFs in diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Carey, R. M., & Siragy, H. M. (2003). Newly recognized components of the renin–angiotensin system: Potential roles in cardiovascular and renal regulation. Endocrine Reviews, 24(3), 261–271.

    Article  PubMed  CAS  Google Scholar 

  2. Unger, T., Paulis, L., & Sica, D. A. Therapeutic perspectives in hypertension: Novel means for renin–angiotensin–aldosterone system modulation and emerging device-based approaches. European Heart Journal, 32(22), 2739–2747. doi:10.1093/eurheartj/ehr253.

  3. Paul, M., Poyan Mehr, A., & Kreutz, R. (2006). Physiology of local renin–angiotensin systems. Physiological Reviews, 86(3), 747–803. doi:10.1152/physrev.00036.2005.

    Article  PubMed  CAS  Google Scholar 

  4. Ma, T. K., Kam, K. K., Yan, B. P., & Lam, Y. Y. Renin–angiotensin–aldosterone system blockade for cardiovascular diseases: Current status. British Journal of Pharmacology, 160(6), 1273–1292. doi:10.1111/j.1476-5381.2010.00750.x.

  5. Dostal, D. E., & Baker, K. M. (1999). The cardiac renin–angiotensin system: Conceptual, or a regulator of cardiac function? Circulation Research, 85(7), 643–650.

    Article  PubMed  CAS  Google Scholar 

  6. Gray, M. O., Long, C. S., Kalinyak, J. E., Li, H. T., & Karliner, J. S. (1998). Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovascular Research, 40(2), 352–363.

    Article  PubMed  CAS  Google Scholar 

  7. Buhler, F. R., Bolli, P., Kiowski, W., Erne, P., Hulthen, U. L., & Block, L. H. (1984). Renin profiling to select antihypertensive baseline drugs. Renin inhibitors for high-renin and calcium entry blockers for low-renin patients. American Journal of Medicine, 77(2A), 36–42.

    PubMed  CAS  Google Scholar 

  8. Weiss, D., Sorescu, D., & Taylor, W. R. (2001). Angiotensin II and atherosclerosis. The American Journal of Cardiology, 87(8A), 25C–32C.

    Article  PubMed  CAS  Google Scholar 

  9. Weiss, D., Kools, J. J., & Taylor, W. R. (2001). Angiotensin II-induced hypertension accelerates the development of atherosclerosis in apoE-deficient mice. Circulation, 103(3), 448–454.

    Article  PubMed  CAS  Google Scholar 

  10. Brown, R. D., Ambler, S. K., Mitchell, M. D., & Long, C. S. (2005). The cardiac fibroblast: Therapeutic target in myocardial remodeling and failure. Annual Review of Pharmacology and Toxicology, 45, 657–687. doi:10.1146/annurev.pharmtox.45.120403.095802.

    Article  PubMed  CAS  Google Scholar 

  11. Iwata, M., Cowling, R. T., Yeo, S. J., & Greenberg, B. Targeting the ACE2–Ang-(1–7) pathway in cardiac fibroblasts to treat cardiac remodeling and heart failure. Journal of Molecular and Cellular Cardiology, 51(4), 542–547. doi:10.1016/j.yjmcc.2010.12.003.

  12. Singh, V. P., Baker, K. M., & Kumar, R. (2008). Activation of the intracellular renin–angiotensin system in cardiac fibroblasts by high glucose: Role in extracellular matrix production. American Journal of Physiology. Heart and Circulatory Physiology, 294(4), H1675–H1684. doi:10.1152/ajpheart.91493.2007.

    Article  PubMed  CAS  Google Scholar 

  13. Kim, N. N., Villarreal, F. J., Printz, M. P., Lee, A. A., & Dillmann, W. H. (1995). Trophic effects of angiotensin II on neonatal rat cardiac myocytes are mediated by cardiac fibroblasts. American Journal of Physiology, 269(3 Pt 1), E426–E437.

    PubMed  CAS  Google Scholar 

  14. Asbun, J., & Villarreal, F. J. (2006). The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. Journal of the American College of Cardiology, 47(4), 693–700. doi:10.1016/j.jacc.2005.09.050.

    Article  PubMed  CAS  Google Scholar 

  15. Vlassara, H., & Palace, M. R. (2002). Diabetes and advanced glycation endproducts. Journal of Internal Medicine, 251(2), 87–101.

    Article  PubMed  CAS  Google Scholar 

  16. Asbun, J., Manso, A. M., & Villarreal, F. J. (2005). Profibrotic influence of high glucose concentration on cardiac fibroblast functions: Effects of losartan and vitamin E. American Journal of Physiology. Heart and Circulatory Physiology, 288(1), H227–H234. doi:10.1152/ajpheart.00340.2004.

    Article  PubMed  CAS  Google Scholar 

  17. Aronson, D. (2003). Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. Journal of Hypertension, 21(1), 3–12. doi:10.1097/01.hjh.0000042892.24999.92.

    Article  PubMed  CAS  Google Scholar 

  18. Cooper, M. E. (2004). Importance of advanced glycation end products in diabetes-associated cardiovascular and renal disease. American Journal of Hypertension, 17(12 Pt 2), 31S–38S. doi:10.1016/j.amjhyper.2004.08.021.

    Article  PubMed  CAS  Google Scholar 

  19. Huebschmann, A. G., Regensteiner, J. G., Vlassara, H., & Reusch. (2006). Diabetes and advanced glycoxidation end products. Diabetes Care, 29(6), 1420–1432. doi:10.2337/dc05-2096.

    Article  PubMed  CAS  Google Scholar 

  20. Goldin, A., Beckman, J. A., Schmidt, A. M., & Creager, M. A. (2006). Advanced glycation end products: Sparking the development of diabetic vascular injury. Circulation, 114(6), 597–605. doi:10.1161/CIRCULATIONAHA.106.621854.

    Article  PubMed  CAS  Google Scholar 

  21. Stern, D. M., Yan, S. D., Yan, S. F., & Schmidt, A. M. (2002). Receptor for advanced glycation endproducts (RAGE) and the complications of diabetes. Ageing Research Reviews, 1(1), 1–15.

    Article  PubMed  CAS  Google Scholar 

  22. Bierhaus, A., Humpert, P. M., Morcos, M., Wendt, T., Chavakis, T., Arnold, B., Stern, D. M., & Nawroth, P. P. (2005). Understanding RAGE, the receptor for advanced glycation end products. Journal of Molecular Medicine (Berlin), 83(11), 876–886. doi:10.1007/s00109-005-0688-7.

    Article  CAS  Google Scholar 

  23. Steckelings, U. M., Rompe, F., Kaschina, E., & Unger, T. (2009). The evolving story of the RAAS in hypertension, diabetes and CV disease: moving from macrovascular to microvascular targets. Fundamental and Clinical Pharmacology, 23(6), 693–703. doi:10.1111/j.1472-8206.2009.00780.x.

    Article  PubMed  CAS  Google Scholar 

  24. Huang, J. S., Guh, J. Y., Hung, W. C., Yang, M. L., Lai, Y. H., Chen, H. C., & Chuang, L. Y. (1999). Role of the Janus kinase (JAK)/signal transducters and activators of transcription (STAT) cascade in advanced glycation end-product-induced cellular mitogenesis in NRK-49F cells. The Biochemical Journal, 342(Pt 1), 231–238.

    Article  PubMed  CAS  Google Scholar 

  25. Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: The renaissance cell. Circulation Research, 105(12), 1164–1176. doi:10.1161/CIRCRESAHA.109.209809.

    Article  PubMed  CAS  Google Scholar 

  26. Liu, X., Ostrom, R. S., & Insel, P. A. (2004). cAMP-elevating agents and adenylyl cyclase overexpression promote an antifibrotic phenotype in pulmonary fibroblasts. American Journal of Physiology. Cell Physiology, 286(5), C1089–C1099. doi:10.1152/ajpcell.00461.2003.

    Article  PubMed  CAS  Google Scholar 

  27. Madani, S., De Girolamo, S., Munoz, D. M., Li, R. K., & Sweeney, G. (2006). Direct effects of leptin on size and extracellular matrix components of human pediatric ventricular myocytes. Cardiovascular Research, 69(3), 716–725. doi:10.1016/j.cardiores.2005.11.022.

    Article  PubMed  CAS  Google Scholar 

  28. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., et al. (1986). Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proceedings of the National Academy of Sciences of the United States of America, 83(12), 4167–4171.

    Article  PubMed  CAS  Google Scholar 

  29. Iwata, M., Cowling, R. T., Gurantz, D., Moore, C., Zhang, S., Yuan, J. X., & Greenberg, B. H. (2005). Angiotensin-(1–7) binds to specific receptors on cardiac fibroblasts to initiate antifibrotic and antitrophic effects. American Journal of Physiology. Heart and Circulatory Physiology, 289(6), H2356–H2363. doi:10.1152/ajpheart.00317.2005.

    Article  PubMed  CAS  Google Scholar 

  30. Zahradka, P., Werner, J. P., Buhay, S., Litchie, B., Helwer, G., & Thomas, S. (2002). NF-kappaB activation is essential for angiotensin II-dependent proliferation and migration of vascular smooth muscle cells. Journal of Molecular and Cellular Cardiology, 34(12), 1609–1621.

    Article  PubMed  CAS  Google Scholar 

  31. Meszaros, J. G., Gonzalez, A. M., Endo-Mochizuki, Y., Villegas, S., Villarreal, F., & Brunton, L. L. (2000). Identification of G protein-coupled signaling pathways in cardiac fibroblasts: Cross talk between G(q) and G(s). American Journal of Physiology. Cell Physiology, 278(1), C154–C162.

    PubMed  CAS  Google Scholar 

  32. Kumar, U. Cross-talk and modulation of signaling between somatostatin and growth factor receptors. Endocrine, 40(2), 168–180. doi:10.1007/s12020-011-9524-8.

  33. Olivares-Reyes, J. A., Shah, B. H., Hernandez-Aranda, J., Garcia-Caballero, A., Farshori, M. P., Garcia-Sainz, J. A., & Catt, K. J. (2005). Agonist-induced interactions between angiotensin AT1 and epidermal growth factor receptors. Molecular Pharmacology, 68(2), 356–364. doi:10.1124/mol.104.010637.

    PubMed  CAS  Google Scholar 

  34. Kamioka, M., Ishibashi, T., Sugimoto, K., Uekita, H., Nagai, R., Sakamoto N, et al. Blockade of renin–angiotensin system attenuates advanced glycation end products-mediated signaling pathways. Journal of Atherosclerosis and Thrombosis, 17(6), 590–600.

  35. Hattori, Y., Suzuki, M., Hattori, S., & Kasai, K. (2002). Vascular smooth muscle cell activation by glycated albumin (Amadori adducts). Hypertension, 39(1), 22–28.

    Article  PubMed  CAS  Google Scholar 

  36. Forbes, J. M., Thorpe, S. R., Thallas-Bonke, V., Pete, J., Thomas, M. C., Deemer, E. R., Bassal, S., El-Osta, A., Long, D. M., Panagiotopoulos, S., Jerums, G., Osicka, T. M., & Cooper, M. E. (2005). Modulation of soluble receptor for advanced glycation end products by angiotensin-converting enzyme-1 inhibition in diabetic nephropathy. Journal of the American Society of Nephrology, 16(8), 2363–2372. doi:10.1681/ASN.2005010062.

    Article  PubMed  CAS  Google Scholar 

  37. Nakamura, K., Yamagishi, S., Nakamura, Y., Takenaka, K., Matsui, T., Jinnouchi, Y., & Imaizumi, T. (2005). Telmisartan inhibits expression of a receptor for advanced glycation end products (RAGE) in angiotensin-II-exposed endothelial cells and decreases serum levels of soluble RAGE in patients with essential hypertension. Microvascular Research, 70(3), 137–141. doi:10.1016/j.mvr.2005.10.002.

    Article  PubMed  CAS  Google Scholar 

  38. Tang, M., Zhong, M., Shang, Y., Lin, H., Deng, J., Jiang, H., Lu, H., Zhang, Y., & Zhang, W. (2008). Differential regulation of collagen types I and III expression in cardiac fibroblasts by AGEs through TRB3/MAPK signaling pathway. Cellular and Molecular Life Sciences, 65(18), 2924–2932. doi:10.1007/s00018-008-8255-3.

    Article  PubMed  CAS  Google Scholar 

  39. Huang, J. S., Guh, J. Y., Chen, H. C., Hung, W. C., Lai, Y. H., & Chuang, L. Y. (2001). Role of receptor for advanced glycation end-product (RAGE) and the JAK/STAT-signaling pathway in AGE-induced collagen production in NRK-49F cells. Journal of Cellular Biochemistry, 81(1), 102–113. doi:10.1002/1097-4644(20010401)81:1<102::AID-JCB1027>3.0.CO;2-Y.

    Article  PubMed  CAS  Google Scholar 

  40. Forbes, J. M., Thomas, M. C., Thorpe, S. R., Alderson, N. L., & Cooper, M. E. (2004). The effects of valsartan on the accumulation of circulating and renal advanced glycation end products in experimental diabetes. Kidney International. Supplement, 92, S105–S107. doi:10.1111/j.1523-1755.2004.09225.x.

    Article  PubMed  CAS  Google Scholar 

  41. Ban, C. R., & Twigg, S. M. (2008). Fibrosis in diabetes complications: Pathogenic mechanisms and circulating and urinary markers. Vascular Health and Risk Management, 4(3), 575–596.

    PubMed  CAS  Google Scholar 

  42. Daoud, S., Schinzel, R., Neumann, A., Loske, C., Fraccarollo, D., Diez, C., & Simm, A. (2001). Advanced glycation endproducts: Activators of cardiac remodeling in primary fibroblasts from adult rat hearts. Molecular Medicine, 7(8), 543–551.

    PubMed  CAS  Google Scholar 

  43. Henry, R. M., Paulus, W. J., Kamp, O., Kostense, P. J., Spijkerman, A. M., Dekker, J. M., Nijpels, G., Heine, R. J., Bouter, L. M., & Stehouwer, C. D. (2008). Deteriorating glucose tolerance status is associated with left ventricular dysfunction—the Hoorn Study. The Netherlands Journal of Medicine, 66(3), 110–117.

    PubMed  CAS  Google Scholar 

  44. Mizushige, K., Yao, L., Noma, T., Kiyomoto, H., Yu, Y., Hosomi, N., Ohmori, K., & Matsuo, H. (2000). Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation, 101(8), 899–907.

    Article  PubMed  CAS  Google Scholar 

  45. Reddy, V. S., Harskamp, R. E., van Ginkel, M. W., Calhoon, J., Baisden, C. E., Kim, I. S., Valente, A. J., & Chandrasekar, B. (2008). Interleukin-18 stimulates fibronectin expression in primary human cardiac fibroblasts via PI3K-Akt-dependent NF-kappaB activation. Journal of Cellular Physiology, 215(3), 697–707. doi:10.1002/jcp.21348.

    Article  PubMed  CAS  Google Scholar 

  46. Wolf, G., Wenzel, U., Burns, K. D., Harris, R. C., Stahl, R. A., & Thaiss, F. (2002). Angiotensin II activates nuclear transcription factor-kappaB through AT1 and AT2 receptors. Kidney International, 61(6), 1986–1995. doi:10.1046/j.1523-1755.2002.00365.x.

    Article  PubMed  CAS  Google Scholar 

  47. Lee, C. I., Guh, J. Y., Chen, H. C., Hung, W. C., Yang, Y. L., & Chuang, L. Y. (2005). Advanced glycation end-product-induced mitogenesis and collagen production are dependent on angiotensin II and connective tissue growth factor in NRK-49F cells. Journal of Cellular Biochemistry, 95(2), 281–292. doi:10.1002/jcb.20380.

    Article  PubMed  CAS  Google Scholar 

  48. Bierhaus, A., Chevion, S., Chevion, M., Hofmann, M., Quehenberger, P., Illmer, T., Luther, T., Berentshtein, E., Tritschler, H., Muller, M., Wahl, P., Ziegler, R., & Nawroth, P. P. (1997). Advanced glycation end product-induced activation of NF-kappaB is suppressed by alpha-lipoic acid in cultured endothelial cells. Diabetes, 46(9), 1481–1490.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. Laurence Brunton and Dr. Francisco Villarreal for help with experimental design and manuscript preparation. This work was supported by the American Heart Association Scientist Development Grant 10SDG2630130 and NH grants (1U54HK08460-01 and 8UL1TR000100-03 to A. C. Zambon). Postdoctoral support for K.G. Yamazaki was provided by the National Institute of General Medical Sciences Institutional Research and Academic Career (IRACDA) grant GM06852.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrina Go Yamazaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamazaki, K.G., Gonzalez, E. & Zambon, A.C. Crosstalk Between the Renin–Angiotensin System and the Advance Glycation End Product Axis in the Heart: Role of the Cardiac Fibroblast. J. of Cardiovasc. Trans. Res. 5, 805–813 (2012). https://doi.org/10.1007/s12265-012-9405-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9405-4

Keywords

Navigation