Skip to main content

Advertisement

Log in

The Dynamic Role of Cardiac Fibroblasts in Development and Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiac fibroblasts are the most abundant cell in the mammalian heart. While they have been historically overlooked in terms of functional contributions to development and physiology, cardiac fibroblasts are now front and center. They are currently recognized as key protagonists during both normal development and cardiomyopathy disease, and work together with cardiomyocytes through paracrine, structural, and potentially electrical interactions. However, the lack of specific biomarkers and fibroblast heterogeneous nature currently convolutes the study of this dynamic cell lineage; though, efforts to advance marker analysis and lineage mapping technologies are ongoing. These tools will help elucidate the functional significance of fibroblast–cardiomyocyte interactions in vivo and delineate the dynamic nature of normal and pathological cardiac fibroblasts. Since therapeutic promise lies in understanding the interface between developmental biology and the postnatal injury response, future studies to understand the divergent roles played by cardiac fibroblasts both in utero and following cardiac insult are essential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Snider, P., Standley, K. N., Wang, J., Azhar, M., Doetschman, T., & Conway, S. J. (2009). Origin of cardiac fibroblasts and the role of periostin. Circulation Research, 105(10), 934–947. doi:10.1161/CIRCRESAHA.109.201400.

    Article  PubMed  CAS  Google Scholar 

  2. Gittenberger-de Groot, A. C. V. P. M., Mentink, M. M. T., Gourdie, R. G., & Poelmann, R. E. (1998). Epicardium-derived cells contribute a novel population to the myocardial wall and the atrioventricular cushions. Circulation Research, 82, 1043–1052.

    Article  PubMed  CAS  Google Scholar 

  3. Kolditz, D. P., Wijffels, M. C., Blom, N. A., van der Laarse, A., Hahurij, N. D., Lie-Venema, H., et al. (2008). Epicardium-derived cells in development of annulus fibrosis and persistence of accessory pathways. Circulation, 117(12), 1508–1517. doi:10.1161/CIRCULATIONAHA.107.726315.

    Article  PubMed  Google Scholar 

  4. Mikawa, T., & Gourdie, R. G. (1996). Pericardial mesoderm generates a population of coronary smooth muscle cells migrating into the heart along with ingrowth of the epicardial organ. Developmental Biology, 174(2), 221–232. doi:10.1006/dbio.1996.0068.

    Article  PubMed  CAS  Google Scholar 

  5. Perez-Pomares, J. M., Carmona, R., Gonzalez-Iriarte, M., Atencia, G., Wessels, A., & Munoz-Chapuli, R. (2002). Origin of coronary endothelial cells from epicardial mesothelium in avian embryos. International Journal of Developmental Biology, 46(8), 1005–1013.

    PubMed  CAS  Google Scholar 

  6. Lie-Venema, H., van den Akker, N. M., Bax, N. A., Winter, E. M., Maas, S., Kekarainen, T., et al. (2007). Origin, fate, and function of epicardium-derived cells (EPDCs) in normal and abnormal cardiac development. Scientific World Journal, 7, 1777–1798. doi:10.1100/tsw.2007.294.

    Article  PubMed  CAS  Google Scholar 

  7. Wessels, A., van den Hoff, M. J., Adamo, R. F., Phelps, A. L., Lockhart, M. M., Sauls, K., et al. Epicardially derived fibroblasts preferentially contribute to the parietal leaflets of the atrioventricular valves in the murine heart. Developmental Biology, 366(2), 111–124. doi:10.1016/j.ydbio.2012.04.020

  8. Norris, R. A., Borg, T. K., Butcher, J. T., Baudino, T. A., Banerjee, I., & Markwald, R. R. (2008). Neonatal and adult cardiovascular pathophysiological remodeling and repair: developmental role of periostin. Annals of the New York Academy of Sciences, 1123, 30–40. doi:10.1196/annals.1420.005.

    Article  PubMed  CAS  Google Scholar 

  9. Souders, C. A., Bowers, S. L., & Baudino, T. A. (2009). Cardiac fibroblast: the renaissance cell. Circulation Research, 105(12), 1164–1176. doi:10.1161/CIRCRESAHA.109.209809.

    Article  PubMed  CAS  Google Scholar 

  10. Zeisberg, E. M., Kalluri, R. Origins of cardiac fibroblasts. Circulation Research, 107(11), 1304–1312. doi:10.1161/CIRCRESAHA.110.231910

  11. Zeisberg, E. M., Tarnavski, O., Zeisberg, M., Dorfman, A. L., McMullen, J. R., Gustafsson, E., et al. (2007). Endothelial-to-mesenchymal transition contributes to cardiac fibrosis. Nature Medicine, 13(8), 952–961. doi:10.1038/nm1613.

    Article  PubMed  CAS  Google Scholar 

  12. Visconti, R. P., & Markwald, R. R. (2006). Recruitment of new cells into the postnatal heart: potential modification of phenotype by periostin. Annals of the New York Academy of Sciences, 1080, 19–33. doi:10.1196/annals.1380.003.

    Article  PubMed  CAS  Google Scholar 

  13. Ebihara, Y., Masuya, M., Larue, A. C., Fleming, P. A., Visconti, R. P., Minamiguchi, H., et al. (2006). Hematopoietic origins of fibroblasts: II. In vitro studies of fibroblasts, CFU-F, and fibrocytes. Experimental Hematology, 34(2), 219–229. doi:10.1016/j.exphem.2005.10.008.

    Article  PubMed  CAS  Google Scholar 

  14. Visconti, R. P., Ebihara, Y., LaRue, A. C., Fleming, P. A., McQuinn, T. C., Masuya, M., et al. (2006). An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circulation Research, 98(5), 690–696. doi:10.1161/01.RES.0000207384.81818.d4.

    Article  PubMed  CAS  Google Scholar 

  15. van Amerongen, M. J., Bou-Gharios, G., Popa, E., van Ark, J., Petersen, A. H., van Dam, G. M., et al. (2008). Bone marrow-derived myofibroblasts contribute functionally to scar formation after myocardial infarction. The Journal of Pathology, 214(3), 377–386. doi:10.1002/path.2281.

    Article  PubMed  Google Scholar 

  16. Endo, J., Sano, M., Fujita, J., Hayashida, K., Yuasa, S., Aoyama, N., et al. (2007). Bone marrow derived cells are involved in the pathogenesis of cardiac hypertrophy in response to pressure overload. Circulation, 116(10), 1176–1184. doi:10.1161/CIRCULATIONAHA.106.650903.

    Article  PubMed  Google Scholar 

  17. Haudek, S. B., Xia, Y., Huebener, P., Lee, J. M., Carlson, S., Crawford, J. R., et al. (2006). Bone marrow-derived fibroblast precursors mediate ischemic cardiomyopathy in mice. Proceedings of the National Academy of Sciences of the United States of America, 103(48), 18284–18289. doi:10.1073/pnas.0608799103.

    Article  PubMed  CAS  Google Scholar 

  18. Diaz-Flores, L., Gutierrez, R., Madrid, J. F., Varela, H., Valladares, F., Acosta, E., et al. (2009). Pericytes. Morphofunction, interactions and pathology in a quiescent and activated mesenchymal cell niche. Histology and Histopathology, 24(7), 909–969.

    PubMed  CAS  Google Scholar 

  19. Krenning, G., Zeisberg, E. M., & Kalluri, R. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology, 225(3), 631–637. doi:10.1002/jcp.22322

  20. Baudino, T. A., Carver, W., Giles, W., & Borg, T. K. (2006). Cardiac fibroblasts: friend or foe? American Journal of Physiology Heart and Circulatory Physiology, 291(3), H1015–H1026. doi:10.1152/ajpheart.00023.2006.

    Article  PubMed  CAS  Google Scholar 

  21. Snider, P., Hinton, R. B., Moreno-Rodriguez, R. A., Wang, J., Rogers, R., Lindsley, A., et al. (2008). Periostin is required for maturation and extracellular matrix stabilization of noncardiomyocyte lineages of the heart. Circulation Research, 102(7), 752–760. doi:10.1161/CIRCRESAHA.107.159517.

    Article  PubMed  CAS  Google Scholar 

  22. Kakkar, R., & Lee, R. T. Intramyocardial fibroblast myocyte communication. Circulation Research, 106(1), 47–57. doi:10.1161/CIRCRESAHA.109.207456

  23. Takeda, N., & Manabe I. Cellular interplay between cardiomyocytes and nonmyocytes in cardiac remodeling. International Journal of Inflammation, 2011:535241. doi:10.4061/2011/535241

  24. Ieda, M., Tsuchihashi, T., Ivey, K. N., Ross, R. S., Hong, T. T., Shaw, R. M., et al. (2009). Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Developmental Cell, 16(2), 233–244. doi:10.1016/j.devcel.2008.12.007.

    Article  PubMed  CAS  Google Scholar 

  25. Noseda, M., & Schneider, M. D. (2009). Fibroblasts inform the heart: control of cardiomyocyte cycling and size by age-dependent paracrine signals. Developmental Cell, 16(2), 161–162. doi:10.1016/j.devcel.2009.01.020.

    Article  PubMed  CAS  Google Scholar 

  26. Gaudesius, G., Miragoli, M., Thomas, S. P., & Rohr, S. (2003). Coupling of cardiac electrical activity over extended distances by fibroblasts of cardiac origin. Circulation Research, 93(5), 421–428. doi:10.1161/01.RES.0000089258.40661.0C.

    Article  PubMed  CAS  Google Scholar 

  27. Vasquez, C., Mohandas, P., Louie, K. L., Benamer, N., Bapat, A. C., & Morley, G. E. Enhanced fibroblast–myocyte interactions in response to cardiac injury. Circulation Research, 107(8), 1011–1020. doi:10.1161/CIRCRESAHA.110.227421

  28. Zhang, Y., Kanter, E. M., & Yamada, K. A. Remodeling of cardiac fibroblasts following myocardial infarction results in increased gap junction intercellular communication. Cardiovascular Pathology, 19(6), e233–e240. doi:10.1016/j.carpath.2009.12.002

  29. Miragoli, M., Gaudesius, G., & Rohr, S. (2006). Electrotonic modulation of cardiac impulse conduction by myofibroblasts. Circulation Research, 98(6), 801–810. doi:10.1161/01.RES.0000214537.44195.a3.

    Article  PubMed  CAS  Google Scholar 

  30. Spach, M. S., & Boineau, J. P. (1997). Microfibrosis produces electrical load variations due to loss of side-to-side cell connections: a major mechanism of structural heart disease arrhythmias. Pacing and Clinical Electrophysiology, 20(2 Pt 2), 397–413.

    Article  PubMed  CAS  Google Scholar 

  31. Ottaviano, F. G., & Yee, K. O. Communication signals between cardiac fibroblasts and cardiac myocytes. Journal of Cardiovascular Pharmacology, 57(5), 513–521. doi:10.1097/FJC.0b013e31821209ee

  32. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews Cancer, 6(5), 392–401. doi:10.1038/nrc1877.

    Article  PubMed  CAS  Google Scholar 

  33. Chang, H. Y., Chi, J. T., Dudoit, S., Bondre, C., van de Rijn, M., Botstein, D., et al. (2002). Diversity, topographic differentiation, and positional memory in human fibroblasts. Proceedings of the National Academy of Sciences of the United States of America, 99(20), 12877–12882. doi:10.1073/pnas.162488599.

    Article  PubMed  CAS  Google Scholar 

  34. Weber, K. T. (1997). Monitoring tissue repair and fibrosis from a distance. Circulation, 96(8), 2488–2492.

    PubMed  CAS  Google Scholar 

  35. Takeda, N., Manabe, I., Uchino, Y., Eguchi, K., Matsumoto, S., Nishimura, S., et al. (2010). Cardiac fibroblasts are essential for the adaptive response of the murine heart to pressure overload. Journal of Clinical Investigation, 120(1), 254–265. doi:10.1172/JCI40295

    Google Scholar 

  36. Qian, L., Huang, Y., Spencer, C. I., Foley, A., Vedantham, V., Liu, L., et al. In vivo reprogramming of murine cardiac fibroblasts into induced cardiomyocytes. Nature, doi:10.1038/nature11044

  37. Lindsley, A., Snider, P., Zhou, H., Rogers, R., Wang, J., Olaopa, M., et al. (2007). Identification and characterization of a novel Schwann and outflow tract endocardial cushion lineage-restricted periostin enhancer. Developmental Biology, 307(2), 340–355. doi:10.1016/j.ydbio.2007.04.041.

    Article  PubMed  CAS  Google Scholar 

  38. Kruzynska-Frejtag, A., Machnicki, M., Rogers, R., Markwald, R. R., & Conway, S. J. (2001). Periostin (an osteoblast-specific factor) is expressed within the embryonic mouse heart during valve formation. Mechanisms of Development, 103(1–2), 183–188.

    Article  PubMed  CAS  Google Scholar 

  39. Lie-Venema, H., Gittenberger-de Groot, A. C., van Empel, L. J., Boot, M. J., Kerkdijk, H., de Kant, E., et al. (2003). Ets-1 and Ets-2 transcription factors are essential for normal coronary and myocardial development in chicken embryos. Circulation Research, 92(7), 749–756. doi:10.1161/01.RES.0000066662.70010.DB.

    Article  PubMed  CAS  Google Scholar 

  40. Smith, C. L., Baek, S. T., Sung, C. Y., & Tallquist, M. D. Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circulation Research, 108(12), e15–e26. doi:10.1161/CIRCRESAHA.110.235531

  41. Vega-Hernandez, M., Kovacs, A., De Langhe, S., & Ornitz, D. M. FGF10/FGFR2b signaling is essential for cardiac fibroblast development and growth of the myocardium. Development, 138(15), 3331–3340. doi:10.1242/dev.064410

  42. Horio, T., Maki, T., Kishimoto, I., Tokudome, T., Okumura, H., Yoshihara, F., et al. (2005). Production and autocrine/paracrine effects of endogenous insulin-like growth factor-1 in rat cardiac fibroblasts. Regulatory Peptides, 124(1–3), 65–72. doi:10.1016/j.regpep.2004.06.029.

    Article  PubMed  CAS  Google Scholar 

  43. Borg, T. K., Ranson, W. F., Moslehy, F. A., & Caulfield, J. B. (1981). Structural basis of ventricular stiffness. Laboratory Investigation, 44(1), 49–54.

    PubMed  CAS  Google Scholar 

  44. Borg, T. K., Rubin, K., Lundgren, E., Borg, K., & Obrink, B. (1984). Recognition of extracellular matrix components by neonatal and adult cardiac myocytes. Developmental Biology, 104(1), 86–96.

    Article  PubMed  CAS  Google Scholar 

  45. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., & Field, L. J. (1996). Cardiomyocyte DNA synthesis and binucleation during murine development. American Journal of Physiology, 271(5 Pt 2), H2183–H2189.

    PubMed  CAS  Google Scholar 

  46. Porrello, E. R., Mahmoud, A. I., Simpson, E., Hill, J. A., Richardson, J. A., Olson, E. N., et al. Transient regenerative potential of the neonatal mouse heart. Science, 331(6020), 1078–1080. doi:10.1126/science.1200708

  47. Ieda, M., Fu, J. D., Delgado-Olguin, P., Vedantham, V., Hayashi, Y., Bruneau, B. G., et al. Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors. Cell, 142(3), 375–386. doi:10.1016/j.cell.2010.07.002

  48. Jayawardena, T. M., Egemnazarov, B., Finch, E. A., Zhang, L., Payne, J. A., Pandya, K., et al. MicroRNA-mediated in vitro and in vivo direct reprogramming of cardiac fibroblasts to cardiomyocytes. Circulation Research, doi:10.1161/CIRCRESAHA.112.269035

  49. Kawaguchi, M., Takahashi, M., Hata, T., Kashima, Y., Usui, F., Morimoto, H., et al. Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation, 123(6), 594–604. doi:10.1161/CIRCULATIONAHA.110.982777

  50. Goldsmith, E. C., Hoffman, A., Morales, M. O., Potts, J. D., Price, R. L., McFadden, A., et al. (2004). Organization of fibroblasts in the heart. Developmental Dynamics, 230(4), 787–794. doi:10.1002/dvdy.20095.

    Article  PubMed  CAS  Google Scholar 

  51. Matsusaka, T., Katori, H., Inagami, T., Fogo, A., & Ichikawa, I. (1999). Communication between myocytes and fibroblasts in cardiac remodeling in angiotensin chimeric mice. The Journal of Clinical Investigation, 103(10), 1451–1458. doi:10.1172/JCI5056.

    Article  PubMed  CAS  Google Scholar 

  52. Molkentin, J. D., Lu, J. R., Antos, C. L., Markham, B., Richardson, J., Robbins, J., et al. (1998). A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell, 93(2), 215–228.

    Article  PubMed  CAS  Google Scholar 

  53. Litchenberg, W. H., Norman, L. W., Holwell, A. K., Martin, K. L., Hewett, K. W., & Gourdie, R. G. (2000). The rate and anisotropy of impulse propagation in the postnatal terminal crest are correlated with remodeling of Cx43 gap junction pattern. Cardiovascular Research, 45(2), 379–387.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang, Y., Kanter, E. M., Laing, J. G., Aprhys, C., Johns, D. C., Kardami, E., et al. (2008). Connexin43 expression levels influence intercellular coupling and cell proliferation of native murine cardiac fibroblasts. Cell Communication & Adhesion, 15(3), 289–303. doi:10.1080/15419060802198736.

    Article  CAS  Google Scholar 

  55. Camelliti, P., Green, C. R., & Kohl, P. (2006). Structural and functional coupling of cardiac myocytes and fibroblasts. Advances in Cardiology, 42, 132–149. doi:10.1159/000092566.

    Article  PubMed  CAS  Google Scholar 

  56. Roell, W., Lewalter, T., Sasse, P., Tallini, Y. N., Choi, B. R., Breitbach, M., et al. (2007). Engraftment of connexin 43-expressing cells prevents post-infarct arrhythmia. Nature, 450(7171), 819–824. doi:10.1038/nature06321.

    Article  PubMed  CAS  Google Scholar 

  57. Bowers, S. L., Borg, T. K., & Baudino, T. A. The dynamics of fibroblast–myocyte–capillary interactions in the heart. Annals of the New York Academy of Sciences, 1188, 143–152. doi:10.1111/j.1749-6632.2009.05094.x

  58. Conway, S. J., Doetschman, T., & Azhar, M. (2011). The inter-relationship of periostin, TGF beta, and BMP in heart valve development and valvular heart diseases. ScientificWorldJournal, 11, 1509–1524. doi:10.1100/tsw.2011.132.

    Article  PubMed  CAS  Google Scholar 

  59. Doetschman, T., Barnett, J. V., Runyan, R. B., Camenisch, T. D., Heimark, R. L., Granzier, H. L., et al. (2012). Transforming growth factor beta signaling in adult cardiovascular diseases and repair. Cell and Tissue Research, 347(1), 203–223. doi:10.1007/s00441-011-1241-3.

    Article  PubMed  CAS  Google Scholar 

  60. Katsuragi, N., Morishita, R., Nakamura, N., Ochiai, T., Taniyama, Y., Hasegawa, Y., et al. (2004). Periostin as a novel factor responsible for ventricular dilation. Circulation, 110(13), 1806–1813. doi:10.1161/01.CIR.0000142607.33398.54.

    Article  PubMed  CAS  Google Scholar 

  61. Wang, D., Oparil, S., Feng, J. A., Li, P., Perry, G., Chen, L. B., et al. (2003). Effects of pressure overload on extracellular matrix expression in the heart of the atrial natriuretic peptide-null mouse. Hypertension, 42(1), 88–95. doi:10.1161/01.HYP.0000074905.22908.A6.

    Article  PubMed  CAS  Google Scholar 

  62. Kudo, A. Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cellular and Molecular Life Sciences, 68(19), 3201–3207. doi:10.1007/s00018-011-0784-5

  63. Stanton, L. W., Garrard, L. J., Damm, D., Garrick, B. L., Lam, A., Kapoun, A. M., et al. (2000). Altered patterns of gene expression in response to myocardial infarction. Circulation Research, 86(9), 939–945.

    Article  PubMed  CAS  Google Scholar 

  64. Conway, S. J., & Molkentin, J. D. (2008). Periostin as a heterofunctional regulator of cardiac development and disease. Current Genomics, 9(8), 548–555. doi:10.2174/138920208786847917.

    Article  PubMed  CAS  Google Scholar 

  65. Norris, R. A., Moreno-Rodriguez, R., Hoffman, S., & Markwald, R. R. (2009). The many facets of the matricelluar protein periostin during cardiac development, remodeling, and pathophysiology. Journal of Cell Communication and Signaling, 3(3–4), 275–286. doi:10.1007/s12079-009-0063-5.

    Article  PubMed  Google Scholar 

  66. Bao, S., Ouyang, G., Bai, X., Huang, Z., Ma, C., Liu, M., et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell, 5(4), 329–339.

    Article  PubMed  CAS  Google Scholar 

  67. Gillan, L., Matei, D., Fishman, D. A., Gerbin, C. S., Karlan, B. Y., & Chang, D. D. (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Research, 62(18), 5358–5364.

    PubMed  CAS  Google Scholar 

  68. Kim, C. J., Yoshioka, N., Tambe, Y., Kushima, R., Okada, Y., & Inoue, H. (2005). Periostin is down-regulated in high grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells. International Journal of Cancer, 117(1), 51–58. doi:10.1002/ijc.21120.

    Article  CAS  Google Scholar 

  69. Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., & Anversa, P. (2001). Transplanted adult bone marrow cells repair myocardial infarcts in mice. Annals of the New York Academy of Sciences, 938, 221–229. discussion 229–230.

    Article  PubMed  CAS  Google Scholar 

  70. Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., et al. (2001). Bone marrow cells regenerate infarcted myocardium. Nature, 410(6829), 701–705. doi:10.1038/35070587.

    Article  PubMed  CAS  Google Scholar 

  71. Jackson, K. A., Majka, S. M., Wang, H., Pocius, J., Hartley, C. J., Majesky, M. W., et al. (2001). Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. The Journal of Clinical Investigation, 107(11), 1395–1402. doi:10.1172/JCI12150.

    Article  PubMed  CAS  Google Scholar 

  72. Kocher, A. A., Schuster, M. D., Szabolcs, M. J., Takuma, S., Burkhoff, D., Wang, J., et al. (2001). Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nature Medicine, 7(4), 430–436. doi:10.1038/86498.

    Article  PubMed  CAS  Google Scholar 

  73. Yeh, E. T., Zhang, S., Wu, H. D., Korbling, M., Willerson, J. T., & Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108(17), 2070–2073. doi:10.1161/01.CIR.0000099501.52718.70.

    Article  PubMed  Google Scholar 

  74. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418(6893), 41–49. doi:10.1038/nature00870.

    Article  PubMed  CAS  Google Scholar 

  75. Shimazaki, M., Nakamura, K., Kii, I., Kashima, T., Amizuka, N., Li, M., et al. (2008). Periostin is essential for cardiac healing after acute myocardial infarction. The Journal of Experimental Medicine, 205(2), 295–303. doi:10.1084/jem.20071297.

    Article  PubMed  CAS  Google Scholar 

  76. Fan, Y. H., Dong, H., Pan, Q., Cao, Y. J., Li, H., & Wang, H. C. Notch signaling may negatively regulate neonatal rat cardiac fibroblast–myofibroblast transformation. Physiological Research, 60(5), 739–748.

  77. Baum, J., & Duffy, H. S. Fibroblasts and myofibroblasts: what are we talking about? Journal of Cardiovascular Pharmacology, 57(4), 376–379. doi:10.1097/FJC.0b013e3182116e39

  78. Lijnen, P. J., Petrov, V. V., & Fagard, R. H. (2000). Induction of cardiac fibrosis by transforming growth factor-beta(1). Molecular Genetics and Metabolism, 71(1–2), 418–435. doi:10.1006/mgme.2000.3032.

    Article  PubMed  CAS  Google Scholar 

  79. Wight, T. N., & Potter-Perigo, S. The extracellular matrix: an active or passive player in fibrosis? American Journal of Physiology Gastrointestinal and Liver Physiology, 301(6), G950–G955. doi:10.1152/ajpgi.00132.2011

  80. Meyer, A., Wang, W., Qu, J., Croft, L., Degen, J. L., Coller, B. S., et al. (2012). Platelet TGF-beta1 contributions to plasma TGF-beta1, cardiac fibrosis, and systolic dysfunction in a mouse model of pressure overload. Blood, 119(4), 1064–1074. doi:10.1182/blood-2011-09-377648.

    Article  PubMed  CAS  Google Scholar 

  81. Bai, D., Gao, Q., Li, C., Ge, L., Gao, Y., & Wang, H. A conserved TGFbeta1/HuR feedback circuit regulates the fibrogenic response in fibroblasts. Cellular Signalling, 24(7), 1426–1432. doi:10.1016/j.cellsig.2012.03.003

  82. Azhar, M., Yin, M., Bommireddy, R., Duffy, J. J., Yang, J., Pawlowski, S. A., et al. (2009). Generation of mice with a conditional allele for transforming growth factor beta 1 gene. Genesis, 47(6), 423–431. doi:10.1002/dvg.20516.

    Article  PubMed  CAS  Google Scholar 

  83. Doetschman, T., Georgieva, T., Li, H., Reed, T. D., Grisham, C., Friel, J., et al. Generation of mice with a conditional allele for the transforming growth factor beta3 gene. Genesis, 50(1), 59–66. doi:10.1002/dvg.20789

  84. Pelton, R. W., Saxena, B., Jones, M., Moses, H. L., & Gold, L. I. (1991). Immunohistochemical localization of TGF beta 1, TGF beta 2, and TGF beta 3 in the mouse embryo: expression patterns suggest multiple roles during embryonic development. The Journal of Cell Biology, 115(4), 1091–1105.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the members of the Conway lab, Dr. Mohamad Azhar, and the reviewers for their insightful comments. These studies were supported, in part, by Riley Children’s Foundation, and Indiana University Department of Pediatrics (Neonatal-Perinatal Medicine) and National Institute of Health [HL60714] to SJC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Conway.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lajiness, J.D., Conway, S.J. The Dynamic Role of Cardiac Fibroblasts in Development and Disease. J. of Cardiovasc. Trans. Res. 5, 739–748 (2012). https://doi.org/10.1007/s12265-012-9394-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9394-3

Keywords

Navigation