Skip to main content

Advertisement

Log in

Derivation of Vascular Endothelial Cells from Human Embryonic Stem Cells Under GMP-Compliant Conditions: Towards Clinical Studies in Ischaemic Disease

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Revascularisation of ischaemic tissue remains an area of substantial unmet clinical need in cardiovascular disease. Strategies to induce therapeutic angiogenesis are therefore attractive. Our recent focus has been on human embryonic stem cell (hESC) strategies since hESC can be maintained in a pluripotent state or differentiated into any desired cell type, including endothelial cells (EC), under defined differentiation culture conditions. We recently published a protocol for non-good manufacturing practice (GMP) feeder- and serum-free hESC-EC-directed monolayer differentiation to vascular EC demonstrating the potential to generate hESC-derived EC in a GMP-compliant manner suitable for use in clinical trials. In this study we modified that laboratory protocol to GMP compliance. EC production was confirmed by flow cytometry, qRT-PCR and production of vascular structures in Matrigel®, yielding approximately 30 % mature VE-cadherin+/PECAM-1+ cells using the GMP-compliant hESC line RC13. In conclusion, we have successfully demonstrated the production of vascular EC under GMP-compliant conditions suitable for clinical evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

GMP:

Good manufacturing practice

EC:

Endothelial cells

hESC:

Human embryonic stem cells

EPC:

Endothelial progenitor cells

N-CAM:

Neuronal cell adhesion molecule

KDR:

Kinase insert domain receptor

PAD:

Peripheral arterial disease

CLI:

Critical limb ischaemia

BM:

Bone marrow

EBs:

Embryoid bodies

MEF:

Mouse embryonic fibroblasts

ATMP:

Advanced therapy medicinal products

bFGF:

Basic fibroblast growth factor

VEGF:

Vascular endothelial growth factor

References

  1. Gupta, R., & Losordo, D. W. (2011). Cell therapy for critical limb ischemia: Moving forward one step at a time. Circulation Cardiovascular Interventions, 4(1), 2–5.

    Article  PubMed  Google Scholar 

  2. Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282(5391), 1145–1147.

    Article  PubMed  CAS  Google Scholar 

  3. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., & Bongso, A. (2000). Embryonic stem cell lines from human blastocysts: Somatic differentiation in vitro. Nature Biotechnology, 18(4), 399–404.

    Article  PubMed  CAS  Google Scholar 

  4. Wang, L., Li, L., Shojaei, F., Levac, K., Cerdan, C., Menendez, P., Martin, T., Rouleau, A., & Bhatia, M. (2004). Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity, 21(1), 31–41.

    Article  PubMed  CAS  Google Scholar 

  5. Levenberg, S., Golub, J. S., Amit, M., Itskovitz-Eldor, J., & Langer, R. (2002). Endothelial cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 99(7), 4391–4396.

    Article  PubMed  CAS  Google Scholar 

  6. Lu, S. J., Feng, Q., Caballero, S., Chen, Y., Moore, M. A., Grant, M. B., & Lanza, R. (2007). Generation of functional hemangioblasts from human embryonic stem cells. Nature Methods, 4(6), 501–509.

    Article  PubMed  CAS  Google Scholar 

  7. Chen, S. S., Fitzgerald, W., Zimmerberg, J., Kleinman, H. K., & Margolis, L. (2007). Cell–cell and cell–extracellular matrix interactions regulate embryonic stem cell differentiation. Stem Cells, 25(3), 553–561.

    Article  PubMed  CAS  Google Scholar 

  8. Li, Z., Suzuki, Y., Huang, M., Cao, F., Xie, X., Connolly, A. J., Yang, P. C., & Wu, J. C. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells, 26(4), 864–873.

    Article  PubMed  CAS  Google Scholar 

  9. Kaufman, D. S., Hanson, E. T., Lewis, R. L., Auerbach, R., & Thomson, J. A. (2001). Hematopoietic colony-forming cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10716–10721.

    Article  PubMed  CAS  Google Scholar 

  10. Wang, Z. Z., Au, P., Chen, T., Shao, Y., Daheron, L. M., Bai, H., Arzigian, M., Fukumura, D., Jain, R. K., & Scadden, D. T. (2007). Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo. Nature Biotechnology, 25(3), 317–318.

    Article  PubMed  CAS  Google Scholar 

  11. Vodyanik, M. A., Bork, J. A., Thomson, J. A., & Slukvin, I. I. (2005). Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood, 105(2), 617–626.

    Article  PubMed  CAS  Google Scholar 

  12. Lagarkova, M. A., Volchkov, P. Y., Philonenko, E. S., & Kiselev, S. L. (2008). Efficient differentiation of hESCs into endothelial cells in vitro is secured by epigenetic changes. Cell Cycle, 7(18), 2929–2935.

    Article  PubMed  CAS  Google Scholar 

  13. Prado-Lopez, S., Conesa, A., Arminan, A., Martinez-Losa, M., Escobedo-Lucea, C., Gandia, C., Tarazona, S., Melguizo, D., Blesa, D., Montaner, D., Sanz-Gonzalez, S., Sepulveda, P., Gotz, S., O’Connor, J. E., Moreno, R., Dopazo, J., Burks, D. J., & Stojkovic, M. (2010). Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells, 28(3), 407–418.

    PubMed  CAS  Google Scholar 

  14. Nourse, M. B., Halpin, D. E., Scatena, M., Mortisen, D. J., Tulloch, N. L., Hauch, K. D., Torok-Storb, B., Ratner, B. D., Pabon, L., & Murry, C. E. (2009). VEGF induces differentiation of functional endothelium from human embryonic stem cells: Implications for tissue engineering. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(1), 80–89.

    Article  PubMed  Google Scholar 

  15. James, D., Nam, H. S., Seandel, M., Nolan, D., Janovitz, T., Tomishima, M., Studer, L., Lee, G., Lyden, D., Benezra, R., Zaninovic, N., Rosenwaks, Z., Rabbany, S. Y., & Rafii, S. (2010). Expansion and maintenance of human embryonic stem cell-derived endothelial cells by TGFbeta inhibition is Id1 dependent. Nature Biotechnology, 28(2), 161–166.

    Article  PubMed  CAS  Google Scholar 

  16. Cuende, N., & Izeta, A. (2010). Clinical translation of stem cell therapies: A bridgeable gap. Cell Stem Cell, 6(6), 508–512.

    Article  PubMed  CAS  Google Scholar 

  17. Hyun, I., Lindvall, O., Ahrlund-Richter, L., Cattaneo, E., Cavazzana-Calvo, M., Cossu, G., De Luca, M., Fox, I. J., Gerstle, C., Goldstein, R. A., Hermeren, G., High, K. A., Kim, H. O., Lee, H. P., Levy-Lahad, E., Li, L., Lo, B., Marshak, D. R., McNab, A., Munsie, M., Nakauchi, H., Rao, M., Rooke, H. M., Valles, C. S., Srivastava, A., Sugarman, J., Taylor, P. L., Veiga, A., Wong, A. L., Zoloth, L., & Daley, G. Q. (2008). New ISSCR guidelines underscore major principles for responsible translational stem cell research. Cell Stem Cell, 3(6), 607–609.

    Article  PubMed  CAS  Google Scholar 

  18. Kane, N. M., Meloni, M., Spencer, H. L., Craig, M. A., Strehl, R., Milligan, G., Houslay, M. D., Mountford, J. C., Emanueli, C., & Baker, A. H. (2010). Derivation of endothelial cells from human embryonic stem cells by directed differentiation: Analysis of microRNA and angiogenesis in vitro and in vivo. Arteriosclerosis, Thrombosis, and Vascular Biology, 30(7), 1389–1397.

    Article  PubMed  CAS  Google Scholar 

  19. Kane, N. M., Howard, L., Descamps, B., Meloni, M., McClure, J., Lu, R., McCahill, A., Breen, C., Mackenzie, R. M., Delles, C., Mountford, J. C., Milligan, G., Emanueli, C., & Baker, A. H. (2012). Role of MicroRNAs 99b, 181a, and 181b in the differentiation of human embryonic stem cells to vascular endothelial cells. Stem Cells, 30(4), 643–654.

    Article  PubMed  CAS  Google Scholar 

  20. Huang, N. F., Niiyama, H., Peter, C., De, A., Natkunam, Y., Fleissner, F., Li, Z., Rollins, M. D., Wu, J. C., Gambhir, S. S., & Cooke, J. P. (2010). Embryonic stem cell-derived endothelial cells engraft into the ischemic hindlimb and restore perfusion. Arterioscler Thromb Vasc Biol, 30(5), 984–991.

    Article  PubMed  CAS  Google Scholar 

  21. Dar, A., Domev, H., Ben-Yosef, O., Tzukerman, M., Zeevi-Levin, N., Novak, A., Germanguz, I., Amit, M., & Itskovitz-Eldor, J. (2012). Multipotent vasculogenic pericytes from human pluripotent stem cells promote recovery of murine ischemic limb. Circulation, 125(1), 87–99.

    Article  PubMed  Google Scholar 

  22. Cho, S. W., Moon, S. H., Lee, S. H., Kang, S. W., Kim, J., Lim, J. M., Kim, H. S., Kim, B. S., & Chung, H. M. (2007). Improvement of postnatal neovascularization by human embryonic stem cell derived endothelial-like cell transplantation in a mouse model of hindlimb ischemia. Circulation, 116(21), 2409–2419.

    Article  PubMed  CAS  Google Scholar 

  23. Sone, M., Itoh, H., Yamahara, K., Yamashita, J. K., Yurugi-Kobayashi, T., Nonoguchi, A., Suzuki, Y., Chao, T. H., Sawada, N., Fukunaga, Y., Miyashita, K., Park, K., Oyamada, N., Sawada, N., Taura, D., Tamura, N., Kondo, Y., Nito, S., Suemori, H., Nakatsuji, N., Nishikawa, S., & Nakao, K. (2007). Pathway for differentiation of human embryonic stem cells to vascular cell components and their potential for vascular regeneration. Arteriosclerosis, Thrombosis, and Vascular Biology, 27(10), 2127–2134.

    Article  PubMed  CAS  Google Scholar 

  24. Evseenko, D., Zhu, Y., Schenke-Layland, K., Kuo, J., Latour, B., Ge, S., Scholes, J., Dravid, G., Li, X., MacLellan, W. R., & Crooks, G. M. (2010). Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 107(31), 13742–13747.

    Article  PubMed  CAS  Google Scholar 

  25. Stratman, A. N., Davis, M. J., & Davis, G. E. (2011). VEGF and FGF prime vascular tube morphogenesis and sprouting directed by hematopoietic stem cell cytokines. Blood, 117(14), 3709–3719.

    Article  PubMed  Google Scholar 

  26. Asahara, T., & Kawamoto, A. (2004). Endothelial progenitor cells for postnatal vasculogenesis. American Journal of Physiology Cell Physiology, 287(3), C572–C579.

    Article  PubMed  CAS  Google Scholar 

  27. Jones, E. A., Kinsey, S. E., English, A., Jones, R. A., Straszynski, L., Meredith, D. M., Markham, A. F., Jack, A., Emery, P., & McGonagle, D. (2002). Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis and Rheumatism, 46(12), 3349–3360.

    Article  PubMed  Google Scholar 

  28. Bi, Y., Stuelten, C. H., Kilts, T., Wadhwa, S., Iozzo, R. V., Robey, P. G., Chen, X. D., & Young, M. F. (2005). Extracellular matrix proteoglycans control the fate of bone marrow stromal cells. Journal of Biological Chemistry, 280(34), 30481–30489.

    Article  PubMed  CAS  Google Scholar 

  29. Osafune, K., Caron, L., Borowiak, M., Martinez, R. J., Fitz-Gerald, C. S., Sato, Y., Cowan, C. A., Chien, K. R., & Melton, D. A. (2008). Marked differences in differentiation propensity among human embryonic stem cell lines. Nature Biotechnology, 26(3), 313–315.

    Article  PubMed  CAS  Google Scholar 

  30. Albelda, S. M., Muller, W. A., Buck, C. A., & Newman, P. J. (1991). Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell–cell adhesion molecule. The Journal of Cell Biology, 114(5), 1059–1068.

    Article  PubMed  CAS  Google Scholar 

  31. Bach, T. L., Barsigian, C., Chalupowicz, D. G., Busler, D., Yaen, C. H., Grant, D. S., & Martinez, J. (1998). VE-cadherin mediates endothelial cell capillary tube formation in fibrin and collagen gels. Experimental Cell Research, 238(2), 324–334.

    Article  PubMed  CAS  Google Scholar 

  32. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., Witzenbichler, B., Schatteman, G., & Isner, J. M. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275(5302), 964–967.

    Article  PubMed  CAS  Google Scholar 

  33. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., Oz, M. C., Hicklin, D. J., Witte, L., Moore, M. A., & Rafii, S. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95(3), 952–958.

    PubMed  CAS  Google Scholar 

  34. Estes, M. L., Mund, J. A., Mead, L. E., Prater, D. N., Cai, S., Wang, H., Pollok, K. E., Murphy, M. P., An, C. S., Srour, E. F., Ingram, D. A., Jr., & Case, J. (2010). Application of polychromatic flow cytometry to identify novel subsets of circulating cells with angiogenic potential. Cytometry Part A, 77(9), 831–839.

    Article  Google Scholar 

  35. Masouleh, B. K., Baraniskin, A., Schmiegel, W., & Schroers, R. (2010). Quantification of circulating endothelial progenitor cells in human peripheral blood: Establishing a reliable flow cytometry protocol. Journal of Immunological Methods, 357(1–2), 38–42.

    Article  PubMed  CAS  Google Scholar 

  36. Schmidt-Lucke, C., Fichtlscherer, S., Aicher, A., Tschope, C., Schultheiss, H. P., Zeiher, A. M., & Dimmeler, S. (2010). Quantification of circulating endothelial progenitor cells using the modified ISHAGE protocol. PLoS One, 5(11), e13790.

    Article  PubMed  Google Scholar 

  37. Lee, M. J., Kim, J., Lee, K. I., Shin, J. M., Chae, J. I., & Chung, H. M. (2011). Enhancement of wound healing by secretory factors of endothelial precursor cells derived from human embryonic stem cells. Cytotherapy, 13(2), 165–178.

    Article  PubMed  CAS  Google Scholar 

  38. Moon, S. H., Kim, J. S., Park, S. J., Lee, H. J., Do, J. T., & Chung, H. M. (2011). A system for treating ischemic disease using human embryonic stem cell-derived endothelial cells without direct incorporation. Biomaterials, 32(27), 6445–6455.

    Article  PubMed  CAS  Google Scholar 

  39. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., Pell, C. L., Johnstone, B. H., Considine, R. V., & March, K. L. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109(10), 1292–1298.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank the Technological Strategy Board and the British Heart Foundation for supporting this work. AHB is supported by the British Heart Foundation Chair of Translational Cardiovascular Sciences.

Ethical Standards

These studies were performed with project approval from the UK Stem Cell Bank Steering Committee and in accordance with current guidelines for the use of human embryonic stem cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Baker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaupisch, A., Kennedy, L., Stelmanis, V. et al. Derivation of Vascular Endothelial Cells from Human Embryonic Stem Cells Under GMP-Compliant Conditions: Towards Clinical Studies in Ischaemic Disease. J. of Cardiovasc. Trans. Res. 5, 605–617 (2012). https://doi.org/10.1007/s12265-012-9379-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-012-9379-2

Keywords

Navigation