Skip to main content

Advertisement

Log in

Dynamics of Progenitor Cells and Ventricular Assist Device Intervention

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Experimental and clinical evidence suggests that a heterogeneous group of bone-marrow-derived circulating progenitor cells, with variations in phenotype and function, provide an endogenous repair mechanism, contributing to vascular healing and remodeling under physiological and pathological conditions, such as cancer, atherosclerosis, myocardial infarction, and end-stage heart failure. Implantation of ventricular assist devices (VADs) for circulatory support is indicated in selected patients with end-stage heart failure as a bridge to heart transplantation, however seldom; improvement of ventricular contractility has been well documented with prolonged cardiac unloading. The current review summarizes recent findings from in vitro and in vivo studies, focusing on the biological features and the possible role of progenitor cells in the transient myocardial recovery, occasionally seen after VAD implantation, and speculates on their clinical utilities for the treatment of the failing human heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Aicher, A., Heeschen, C., Mildner-Rihm, C., Urbich, C., Ihling, C., Technau-Ihling, K., et al. (2003). Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells. Nature Medicine, 9, 1370–1376.

    Article  CAS  PubMed  Google Scholar 

  2. Asahara, T., Murohara, T., Sullivan, A., Silver, M., van der Zee, R., Li, T., et al. (1997). Isolation of putative progenitor endothelial cells for angiogenesis. Science, 275, 964–967.

    Article  CAS  PubMed  Google Scholar 

  3. Asahara, T., Takahashi, T., Masuda, H., Kalka, C., Chen, D., Iwaguro, H., et al. (1999). VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO Journal, 18, 3964–3972.

    Article  CAS  PubMed  Google Scholar 

  4. Assmus, B., Schächinger, V., Teupe, C., Britten, M., Lehmann, R., Döbert, N., et al. (2002). Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation, 106, 3009–3017.

    Article  PubMed  Google Scholar 

  5. Bahlmann, F. H., de Groot, K., Mueller, O., Hertel, B., Haller, H., & Fliser, D. (2005). Stimulation of endothelial progenitor cells: A new putative therapeutic effect of angiotensin II receptor antagonists. Hypertension, 45, 526–529.

    Article  CAS  PubMed  Google Scholar 

  6. Behfar, A., Zingman, L. V., Hodgson, D. M., Rauzier, J. M., Kane, G. C., Terzic, A., et al. (2002). Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 16, 1558–1566.

    Article  PubMed  Google Scholar 

  7. Dimmeler, S., Aicher, A., Vasa, M., Mildner-Rihm, C., Adler, K., Tiemann, M., et al. (2001). HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. Journal of Clinical Investigation, 108, 391–397.

    CAS  PubMed  Google Scholar 

  8. Fadini, G. P., Coracina, A., Baesso, I., Agostini, C., Tiengo, A., Avogaro, A., et al. (2006). Peripheral blood CD34+ KDR+ endothelial progenitor cells are determinants of subclinical atherosclerosis in a middle-aged general population. Stroke, 37, 2277–2282.

    Article  CAS  PubMed  Google Scholar 

  9. Fadini, G. P., de Kreutzenberg, S. V., Coracina, A., Baesso, I., Agostini, C., Tiengo, A., et al. (2006). Circulating CD34+ cells, metabolic syndrome, and cardiovascular risk. European Heart Journal, 27, 2247–2255.

    Article  CAS  PubMed  Google Scholar 

  10. Foresta, C., Lana, A., Cabrelle, A., Ferigo, M., Caretta, N., Garolla, A., et al. (2005). PDE-5 inhibitor, vardenafil, increases circulating progenitor cells in humans. International Journal of Impotence Research, 17, 377–380.

    Article  CAS  PubMed  Google Scholar 

  11. Friedrich, E. B., Walenta, K., Scharlau, J., Nickenig, G., & Werner, N. (2006). CD34−/CD133+/VEGFR-2+ endothelial progenitor cell subpopulation with potent vasoregenerative capacities. Circulation Research, 98, e20–e25.

    Article  CAS  PubMed  Google Scholar 

  12. George, J., Goldstein, E., Abashidze, A., Wexler, D., Hamed, S., Shmilovich, H., et al. (2005). Erythropoietin promotes endothelial progenitor cell proliferative and adhesive properties in a PI 3-kinase-dependent manner. Cardiovascular Research, 68, 299–306.

    Article  CAS  PubMed  Google Scholar 

  13. Gill, M., Dias, S., Hattori, K., Rivera, M. L., Hicklin, D., Witte, L., et al. (2001). Vascular trauma induces rapid but transient mobilization of VEGFR2(+)AC133(+) endothelial precursor cells. Circulation Research, 88, 167–164.

    CAS  PubMed  Google Scholar 

  14. Gnecchi, M., Zhang, Z., Ni, A., & Dzau, V. J. (2008). Paracrine mechanisms in adult stem cell signaling and therapy. Circulation Research, 103, 1204–1219.

    Article  CAS  PubMed  Google Scholar 

  15. Goette, A., Jentsch-Ullrich, K., Lendeckel, U., Röcken, C., Agbaria, M., Auricchio, A., et al. (2003). Effect of atrial fibrillation on hematopoietic progenitor cells: A novel pathophysiological role of the atrial natriuretic peptide? Circulation, 108, 2446–2449.

    Article  PubMed  Google Scholar 

  16. Heissig, B., Hattori, K., Dias, S., Friedrich, M., Ferris, B., Hackett, N. R., et al. (2002). Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell, 109, 625–637.

    Article  CAS  PubMed  Google Scholar 

  17. Hill, J. M., Zalos, G., Halcox, J. P., Schenke, W. H., Waclawiw, M. A., Quyyumi, A. A., et al. (2003). Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. New England Journal of Medicine, 348, 593–600.

    Article  PubMed  Google Scholar 

  18. Hristov, M., Erl, W., & Weber, P. (2003). Endothelial progenitor cells. Mobilization, differentiation, and homing. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1185–1189.

    Article  CAS  PubMed  Google Scholar 

  19. Ingram, D. A., Caplice, N. M., & Yoder, M. C. (2005). Unresolved questions, changing definitions, and novel paradigms for defining endothelial progenitor cells. Blood, 106, 1525–1531.

    Article  CAS  PubMed  Google Scholar 

  20. Iversen, P. O., Woldbaek, P. R., Tønnessen, T., & Christensen, G. (2002). Decreased hematopoiesis in bone marrow of mice with CHF. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 282, R166–R172.

    CAS  PubMed  Google Scholar 

  21. Jahanyar, J., Youker, K. A., Torre-Amione, G., Koerner, M. M., Bruckner, B., Noon, G. P., et al. (2008). Increased expression of stem cell factor and its receptor after left ventricular assist device support: A potential novel target for therapeutic interventions in heart failure. Journal of Heart and Lung Transplantation, 27, 701–709.

    Article  PubMed  Google Scholar 

  22. Kirshenbaum, A. S., Goff, J. P., Semere, T., Foster, B., Scott, L. M., & Metcalfe, D. D. (1999). Demonstration that human mast cells arise from a progenitor cell population that is CD34(+), c-kit(+), and expresses aminopeptidase N (CD13). Blood, 94, 2333–2342.

    CAS  PubMed  Google Scholar 

  23. Kirshenbaum, A. S., Kessler, S. W., Goff, J. P., & Metcalfe, D. D. (1991). Demonstration of the origin of human mast cells from CD34+ bone marrow progenitor cells. Journal of Immunology, 146, 1410–1415.

    CAS  Google Scholar 

  24. Kissel, C. K., Lehmann, R., Assmus, B., Aicher, A., Honold, J., Fischer-Rasokat, U., et al. (2007). Selective functional exhaustion of hematopoietic progenitor cells in the bone marrow of patients with postinfarction heart failure. Journal of the American College of Cardiology, 49, 2341–2349.

    Article  PubMed  Google Scholar 

  25. Laufs, U., Werner, N., Link, A., Endres, M., Wassmann, S., Jürgens, K., et al. (2004). Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation, 109, 220–226.

    Article  CAS  PubMed  Google Scholar 

  26. Leone, A. M., Rutella, S., Bonanno, G., Abbate, A., Rebuzzi, A. G., Giovannini, S., et al. (2005). Mobilization of bone marrow-derived stem cells after myocardial infarction and left ventricular function. European Heart Journal, 26, 1196–1204.

    Article  PubMed  Google Scholar 

  27. Leone, A. M., Rutella, S., Bonanno, G., Contemi, A. M., de Ritis, D. G., Giannico, M. B., et al. (2006). Endogenous G-CSF and CD34+ cell mobilization after acute myocardial infarction. International Journal of Cardiology, 111, 202–208.

    Article  PubMed  Google Scholar 

  28. Manginas, A., Goussetis, E., Koutelou, M., Karatasakis, G., Peristeri, I., Theodorakos, A., et al. (2007). Pilot study to evaluate the safety and feasibility of intracoronary CD133(+) and CD133(−) CD34(+) cell therapy in patients with nonviable anterior myocardial infarction. Catheterization and Cardiovascular Interventions, 69, 773–781.

    Article  PubMed  Google Scholar 

  29. Manginas, A., Tsiavou, A., Sfyrakis, P., Giamouzis, G., Tsourelis, L., Leontiadis, E., et al. (2009). Increased number of circulating progenitor cells after implantation of ventricular assist devices. Journal of Heart and Lung Transplantation, 28, 710–717.

    Article  PubMed  Google Scholar 

  30. Maybaum, S., Mancini, D., Xydas, S., Starling, R. C., Aaronson, K., Pagani, F. D., et al. (2007). Cardiac improvement during mechanical circulatory support: A prospective multicenter study of the LVAD Working Group. Circulation, 115, 2497–2505.

    Article  PubMed  Google Scholar 

  31. Murohara, T., Ikeda, H., Duan, J., Shintani, S., Sasaki, K., Eguchi, H., et al. (2000). Transplanted cord blood-derived endothelial precursor cells augment postnatal neovascularization. Journal of Clinical Investigation, 105, 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  32. Nissen, N. N., Polverini, P. J., Koch, A. E., Volin, M. V., Gamelli, R. L., & DiPietro, L. A. (1998). Vascular endothelial growth factor mediates angiogenic activity during the proliferative phase of wound healing. American Journal of Pathology, 152, 1445–1452.

    CAS  PubMed  Google Scholar 

  33. Nonaka-Sarukawa, M., Yamamoto, K., Aoki, H., Nishimura, Y., Tomizawa, H., Ichida, M., et al. (2007). Circulating endothelial progenitor cells in CHF. International Journal of Cardiology, 119, 344–348.

    Article  PubMed  Google Scholar 

  34. Olthof, S. G., Fatrai, S., Drayer, A. L., Tyl, M. R., Vellenga, E., & Schuringa, J. J. (2008). Downregulation of signal transducer and activator of transcription 5 (STAT5) in CD34+ cells promotes megakaryocytic development, whereas activation of STAT5 drives erythropoiesis. Stem Cells, 26, 1732–1742.

    Article  CAS  PubMed  Google Scholar 

  35. Orlandi, A., Pagani, F., Avitabile, D., Bonanno, G., Scambia, G., Vigna, E., et al. (2008). Functional properties of cells obtained from human cord blood CD34+ stem cells and mouse cardiac myocytes in coculture. American Journal of Physiology. Heart and Circulatory Physiology, 294, 1541–1549.

    Article  Google Scholar 

  36. Papayannopoulou, T. (2003). Mechanisms of stem-/progenitor-cell mobilization: The anti-VLA-4 paradigm. Seminars in Hematology, 37(1 Suppl 2), 11–18.

    Google Scholar 

  37. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    CAS  PubMed  Google Scholar 

  38. Perin, E. C., Dohmann, H. F., Borojevic, R., Silva, S. A., Sousa, A. L., Mesquita, C. T., et al. (2003). Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure. Circulation, 107, 2294–2302.

    Article  PubMed  Google Scholar 

  39. Pistrosch, F., Herbrig, K., Oelschlaegel, U., Richter, S., Passauer, J., Fischer, S., et al. (2005). PPARgamma-agonist rosiglitazone increases number and migratory activity of cultured endothelial progenitor cells. Atherosclerosis, 183, 163–167.

    Article  CAS  PubMed  Google Scholar 

  40. Popa, E. R., Harmsen, M. C., Tio, R. A., van der Strate, B. W., Brouwer, L. A., Schipper, M., et al. (2006). Circulating CD34+ progenitor cells modulate host angiogenesis and inflammation in vivo. Journal of Molecular and Cellular Cardiology, 41, 86–96.

    Article  CAS  PubMed  Google Scholar 

  41. Powell, T. M., Paul, J. D., Hill, J. M., Thompson, M., Benjamin, M., Rodrigo, M., et al. (2005). Granulocyte colony-stimulating factor mobilizes functional endothelial progenitor cells in patients with coronary artery disease. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 296–301.

    Article  CAS  PubMed  Google Scholar 

  42. Rafii, S., & Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nature Medicine, 9, 702–712.

    Article  CAS  PubMed  Google Scholar 

  43. Rafii, S., Oz, M. C., Seldomridge, J. A., Ferris, B., Asch, A. S., Nachman, R. L., et al. (1995). Characterization of hematopoietic cells arising on the textured surface of left ventricular assist devices. Annals of Thoracic Surgery, 60, 1627–1632.

    Article  CAS  PubMed  Google Scholar 

  44. Rose, E. A., Gelijns, A. C., Moskowitz, A. J., Heitjan, D. F., Stevenson, L. W., Dembitsky, W., et al. (2001). Long-term mechanical left ventricular assistance for end-stage heart failure. New England Journal of Medicine, 345, 1435–1443.

    Article  CAS  PubMed  Google Scholar 

  45. Scheubel, R. J., Zorn, H., Silber, R. E., Kuss, O., Morawietz, H., Holtz, J., et al. (2003). Age-dependent depression in circulating endothelial progenitor cells in patients undergoing coronary artery bypass grafting. Journal of the American College of Cardiology, 42, 2073–2080.

    Article  PubMed  Google Scholar 

  46. Schmidt-Lucke, C., Rössig, L., Fichtlscherer, S., Vasa, M., Britten, M., Kämper, U., et al. (2005). Reduced number of circulating endothelial progenitor cells predicts future cardiovascular events: Proof of concept for the clinical importance of endogenous vascular repair. Circulation, 111, 2981–2987.

    Article  PubMed  Google Scholar 

  47. Shi, Q., Rafii, S., Wu, M. H., Wijelath, E. S., Yu, C., Ishida, A., et al. (1998). Evidence for circulating bone marrow-derived endothelial cells. Blood, 92, 362–367.

    CAS  PubMed  Google Scholar 

  48. Shintani, S., Murohama, T., Ikeda, H., Ueno, T., Honma, T., Katoh, A., et al. (2001). Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation, 103, 2776–2779.

    Article  CAS  PubMed  Google Scholar 

  49. Soppa, G. K., Barton, P. J., Terracciano, C. M., & Yacoub, M. H. (2008). Left ventricular assist device-induced molecular changes in the failing myocardium. Current Opinion in Cardiology, 23, 206–218.

    Article  PubMed  Google Scholar 

  50. Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., et al. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet, 361, 45–46.

    Article  PubMed  Google Scholar 

  51. Strauer, B. E., Brehm, M., Zeus, T., Köstering, M., Hernandez, A., Sorg, R. V., et al. (2002). Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation, 106, 1913–1918.

    Article  PubMed  Google Scholar 

  52. Takahashi, T., Kalka, C., Masuda, H., Chen, D., Silver, M., Kearney, M., et al. (1999). Ischemia- and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nature Medicine, 5, 434–438.

    Article  CAS  PubMed  Google Scholar 

  53. Tse, H. F., Kwong, Y. L., Chan, J. K., Lo, G., Ho, C. L., & Lau, C. P. (2003). Angiogenesis in ischaemic myocardium by intramyocardial autologous bone marrow mononuclear cell implantation. Lancet, 361, 47–49.

    Article  PubMed  Google Scholar 

  54. Urbich, C., Aicher, A., Heeschen, C., Dernbach, E., Hofmann, W. K., Zeiher, A. M., et al. (2005). Soluble factors released by endothelial progenitor cells promote migration of endothelial cells and cardiac resident progenitor cells. Journal of Molecular and Cellular Cardiology, 39, 733–742.

    Article  CAS  PubMed  Google Scholar 

  55. Urbich, C., & Dimmeler, S. (2004). Endothelial progenitor cells: Characterization and role in vascular biology. Circulation Research, 95, 343–353.

    Article  CAS  PubMed  Google Scholar 

  56. Valgimigli, M., Rigolin, G. M., Fucili, A., Porta, M. D., Soukhomovskaia, O., Malagutti, P., et al. (2004). CD34+ and endothelial progenitor cells in patients with various degrees of CHF. Circulation, 110, 1209–1212.

    Article  CAS  PubMed  Google Scholar 

  57. Vasa, M., Fichtlscherer, S., Aicher, A., Adler, K., Urbich, C., Martin, H., et al. (2001). Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circulation Research, 89, e1–e7.

    Article  CAS  PubMed  Google Scholar 

  58. Vranken, I., De Visscher, G., Lebacq, A., Verbeken, E., & Flameng, W. (2008). The recruitment of primitive Lin(−) Sca-1(+), CD34(+), c-kit(+) and CD271(+) cells during the early intraperitoneal foreign body reaction. Biomaterials, 29, 797–808.

    Article  CAS  PubMed  Google Scholar 

  59. Wojciech, W., RataJczak, M., & Tendera, M. (2006). Intereukin-8: More on the mechanisms of progenitor cells mobilization in acute coronary syndromes. European Heart Journal, 27, 1013–1015.

    Google Scholar 

  60. Wollert, K. C., Meyer, G. P., Lotz, J., Ringes-Lichtenberg, S., Lippolt, P., Breidenbach, C., et al. (2004). Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet, 364, 141–148.

    Article  PubMed  Google Scholar 

  61. Yamaguchi, J., Kusano, K. F., Masuo, O., Kawamoto, A., Silver, M., Murasawa, S., et al. (2003). Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation, 107, 1322–1328.

    Article  CAS  PubMed  Google Scholar 

  62. Yeh, E. T., Zhang, S., Wu, H. D., Körbling, M., Willerson, J. T., & Estrov, Z. (2003). Transdifferentiation of human peripheral blood CD34+-enriched cell population into cardiomyocytes, endothelial cells, and smooth muscle cells in vivo. Circulation, 108, 2070–2073.

    Article  PubMed  Google Scholar 

  63. Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., et al. (2005). Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells, 23, 355–364.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, S., Wang, D., Estrov, Z., Raj, S., Willerson, J. T., & Yeh, E. T. (2004). Both cell fusion and transdifferentiation account for the transformation of human peripheral blood CD34-positive cells into cardiomyocytes in vivo. Circulation, 110, 3803–3807.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanassios Manginas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsiavou, A., Manginas, A. Dynamics of Progenitor Cells and Ventricular Assist Device Intervention. J. of Cardiovasc. Trans. Res. 3, 147–152 (2010). https://doi.org/10.1007/s12265-009-9141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-009-9141-6

Keywords

Navigation