Skip to main content

Advertisement

Log in

Adipose Tissue-derived Stem Cells: The Friendly Side of a Classic Cardiovascular Foe

  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Recently, the existence of a population of stem cells located in the adipose tissue has been observed. Adipose-derived stem cells are able to differentiate into multiple cell lineages including cardiac myocytes. Hence, adipose-derived cells are emerging as a new source of adult stem cells for cardiovascular repair. In this review, we discuss the basic principles of adipose-derived stem cells (types and characteristics, obtention processes, immunophenotypic characterization, and cell potency), the initial experimental studies, and the currently ongoing clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Villaron, E. M., Almeida, J., López-Holgado, N., Alcoceba, M., Sánchez-Abarca, L. I., Sanchez-Guijo, F. M., et al. (2004). Mesenchymal stem cells are present in peripheral blood and can engraft after allogeneic hematopoietic stem cell transplantation. Haematologica, 89, 1421–1427.

    PubMed  Google Scholar 

  2. López-Holgado, N., Arroyo, J. L., Pata, C., Villarón, E., Sánchez Guijo, F., Martín, A., et al. (2004). Analysis of hematopoietic progenitor cells in patients with myelodysplastic syndromes according to their cytogenetic abnormalities. Leukemia Leukemia Research, 28, 1181–1187.

    Article  PubMed  Google Scholar 

  3. Zuk, P. A., Zhu, M., Mizuno, H., Huang, J., Futrell, J. W., Katz, A. J., et al. (2001). Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Engineering, 7, 211–228.

    Article  PubMed  CAS  Google Scholar 

  4. Zuk, P. A., Zhu, M., Ashjian, P., De Ugarte, D. A., Huang, J. I., Mizuno, H., et al. (2002). Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 13, 4279–4295.

    Article  PubMed  CAS  Google Scholar 

  5. Fickert, S., Fiedler, J., Brenner, R. E. (2004). Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Research & Therapy, 6, 422–432.

    Article  Google Scholar 

  6. Sánchez, A., García-Sancho, J. (2007). Cardiac repair by stem cells. Cell Death and Differentiation, 14, 1258–1261.

    Article  PubMed  Google Scholar 

  7. Kern, S., Eichler, H., Stoeve, J., Klüter, H., Bieback, K. (2006). Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells, 24, 1294–1301.

    Article  PubMed  CAS  Google Scholar 

  8. Izadpanah, R., Trygg, C., Patel, B., Kriedt, C., Dufour, J., Gimble, J. M., et al. (2006). Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. Journal of Cellular Biochemistry, 99, 1285–1297.

    Article  PubMed  CAS  Google Scholar 

  9. Yoshimura, H., Muneta, T., Nimura, A., Yokoyama, A., Koga, H., & Sekiya, I. (2007). Comparison of rat mesenchymal stem cells derived from bone marrow, synovium, periosteum, adipose tissue, and muscle. Cell & Tissue Research, 327, 449–462.

    Article  CAS  Google Scholar 

  10. Prunet-Marcassus, B., Cousin, B., Caton, D., André, M., Pénicaud, L., & Casteilla, L. (2006). From heterogeneity to plasticity in adipose tissues: site-specific differences. Experimental Cell Research, 312, 727–736.

    Article  PubMed  CAS  Google Scholar 

  11. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., et al. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.

    Article  PubMed  CAS  Google Scholar 

  12. Smith, P., Adams, W. P. Jr., Lipschitz, A. H., Chau, B., Sorokin, E., Rohrich, R. J., et al. (2006). Autologous human fat grafting: effect of harvesting and preparation techniques on adipocyte graft survival. Plastic and Reconstructive Surgery, 117, 1836–1844.

    Article  PubMed  CAS  Google Scholar 

  13. Dicker, A., Le Blanc, K., Aström, G., van Harmelen, V., Götherström, C., Blomqvist, L., et al. (2005). Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Experimental Cell Research, 308, 283–290.

    Article  PubMed  CAS  Google Scholar 

  14. Lee, R. H., Kim, B., Choi, I., Kim, H., Choi, H. S., Suh, K., et al. (2004). Characterization and expression analysis of mesenchymal stem cells from human bone marrow and adipose tissue. Cellular Physiology and Biochemistry, 14, 311–324.

    Article  PubMed  CAS  Google Scholar 

  15. Xu, Y., Malladi, P., Wagner, D. R., Longaker, M. T. (2005). Adipose-derived mesenchymal cells as a potential cell source for skeletal regeneration. Current Opinion in Molecular Therapeutics, 7, 300–305.

    PubMed  Google Scholar 

  16. Gimble, J. M., Katz, A. J., & Bunnell, B. A. (2007). Adipose-derived stem cells for regenerative medicine. Circulation Research, 11, 1249–1260.

    Article  Google Scholar 

  17. Dominici, M., Le Blanc, K., Mueller, I., Slaper-Cortenbach, I., Marini, F., & Krause, D., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    Article  PubMed  CAS  Google Scholar 

  18. Sengenès, C., Lolmède, K., Zakaroff-Girard, A., Busse, R., & Bouloumié, A. (2005). Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells. Journal of Cellular Physiology, 205, 114–122.

    Article  PubMed  Google Scholar 

  19. Astori, G., Vignati, F., Bardelli, S., Tubio, M., Gola, M., Albertini, V., et al. (2007). “In vitro” and multicolor phenotypic characterization of cell subpopulations identified in fresh human adipose tissue stromal vascular fraction and in the derived mesenchymal stem cells. Journal of Translational Medicine, 5, 55.

    Article  PubMed  Google Scholar 

  20. Mitchell, J. B., McIntosh, K., Zvonic, S., Garrett, S., Floyd, Z. E., Kloster, A., et al. (2006). Immunophenotype of human adipose-derived cells: temporal changes in stromal-associated and stem cell-associated markers. Stem Cells, 24, 376–385.

    Article  PubMed  Google Scholar 

  21. Liu, T. M., Martina, M., Hutmacher, D. W., Hui, J. H., Lee, E. H., Lim, B. (2007). Identification of common pathways mediating differentiation of bone marrow- and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells, 25, 750–760.

    Article  PubMed  Google Scholar 

  22. Duckers, H. J., Pinkernell, K., Milstein, A. M., & Hedrick, M. H. (2006). The Bedside Celution™ system for isolation of adipose derived regenerative cells. EIJ, 2, 395–398.

    Google Scholar 

  23. Schäffler, A., & Büchler, C. (2007). Concise review: adipose tissue-derived stromal cells—basic and clinical implications for novel cell-based therapies. Stem Cells, 25, 818–827.

    Article  PubMed  Google Scholar 

  24. McIntosh, K., Zvonic, S., Garrett, S., Mitchell, J. B., Floyd, Z. E., Hammill, L., et al. (2006). The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells, 24, 1246–1253.

    Article  PubMed  CAS  Google Scholar 

  25. Mizuno, H., Zuk, P. A., Zhu, M., Lorenz, H. P., Benhaim, P., & Hedrick, M. H. (2002). Myogenic differentiation by human processed lipoaspirate cells. Plastic and Reconstructive Surgery, 109, 199–209.

    Article  PubMed  Google Scholar 

  26. Rangappa, S., Fen, C., Lee, E. H., Bongso, A., & Sim, E. K. (2003). Transformation of adult mesenchymal stem cells isolated from the fatty tissue into cardiomyocytes. Annals of Thoracic Surgery, 75, 775–779.

    Article  PubMed  Google Scholar 

  27. Planat-Bénard, V., Menard, C., André, M., Puceat, M., Perez, A., Garcia-Verdugo, J. M., et al. (2004). Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circulation Research, 94, 223–229.

    Article  PubMed  Google Scholar 

  28. Planat-Bénard, V., Silvestre, J. S., Cousin, B., André, M., Nibbelink, M., Tamarat, R., et al. (2004). Plasticity of human adipose lineage cells toward endothelial cells. Physiological and therapeutic perspectives. Circulation, 109, 656–663.

    Article  PubMed  Google Scholar 

  29. Miranville, A., Heeschen, C., Sengenès, C., Curat, C. A., Busse, R., & Bouloumié, A. (2004). Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation, 110, 349–355.

    Article  PubMed  CAS  Google Scholar 

  30. Nakagami, H., Morishita, R., Maeda, K., Kikuchi, Y., Ogihara, T., Kaneda, Y. (2006). Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. Journal of Atherosclerosis and Thrombosis, 13, 77–81.

    PubMed  Google Scholar 

  31. Cao, Y., Sun, Z., Liao, L., Meng, Y., Han, Q., & Zhao, R. C. (2005). Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochemical and Biophysical Research Communications, 332, 370–379.

    Article  PubMed  CAS  Google Scholar 

  32. Rehman, J., Traktuev, D., Li, J., Merfeld-Clauss, S., Temm-Grove, C. J., Bovenkerk, J. E., et al. (2004). Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation, 109, 1292–1298.

    Article  PubMed  Google Scholar 

  33. Moon, M. H., Kim, S. Y., Kim, Y. J., Kim, S. J., Lee, J. B., Bae, Y. C., et al. (2006). Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cellular Cellular Physiology and Biochemistry, 17, 279–290.

    Article  PubMed  CAS  Google Scholar 

  34. Nakagami, H., Maeda, K., Morishita, R., et al. (2005). Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 25, 2542–2547.

    Article  PubMed  CAS  Google Scholar 

  35. Strem, B. M., Zhu, M., Alfonso, Z., Daniels, E. J., Schreiber, R., Beygui, R., et al. (2005). Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy, 7, 282–291.

    Article  PubMed  CAS  Google Scholar 

  36. Strem, B. M., Jordan, M., Kim, J., Yang, J., Anderson, C. D., Daniels, E., et al. (2005). Adipose tissue-derived stem cells enhance cardiac function following surgically-induced myocardial infarction. Circulation, 112(suppl II), 274.

    Google Scholar 

  37. Yamada, Y., Wang, X. D., Yokoyama, S., Fukuda, N., & Takakura, N. (2006). Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochemical and Biophysical Research Communications, 342, 662–670.

    Article  PubMed  CAS  Google Scholar 

  38. Yamada, Y., Yokoyama, S., Fukuda, N., Kidoya, H., Huang, X. Y., Naitoh, H., et al. (2007). A novel approach for myocardial regeneration with educated blood cells cocultured with cells from brown adipose tissue. Biochemical and Biophysical Research Communications, 353, 182–188.

    Article  PubMed  CAS  Google Scholar 

  39. Yamada, Y., Yokoyama, S., Wang, X. D., Fukuda, N., & Takakura, N. (2007). Cardiac stem cells in brown adipose tissue express CD133 and induce bone marrow nonhematopoietic cells to differentiate into cardiomyocytes. Stem Cells, 25, 1326–1333.

    Article  PubMed  CAS  Google Scholar 

  40. Watanabe, C. T., Lee, S., Daniela, E., Naqvi, T. Z., Shah, P. K., Shah, A., et al. (2004). Intracoronary adipose tissue-derived stem cell therapy preserves left ventricular function in a porcine infarct model. American Journal of Cardiology, 94(suppl I), 188E.

    Google Scholar 

  41. Alt, E., Scharlau, M., Pinkernell, K., Amadi, C., Reddy, K., Mathias, N., et al. (2005). Uncultured, autologous adipose-derived stromal cells—a novel cell source for cardiac repair. American Journal of Cardiology, 96(suppl I), 71H.

    Google Scholar 

  42. Valina, C., Pinkernell, K., Song, Y. H., Bai, X., Sadat, S., Campeau, R. J., et al. (2007). Intracoronary administration of autologous adipose tissue-derived stem cells improves left ventricular function, perfusion and remodeling after acute myocardial infarction. European Heart Journal, 28, 2667–2677.

    Article  PubMed  Google Scholar 

  43. Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., et al. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Natural Medicines, 12, 459–465.

    Article  CAS  Google Scholar 

  44. Cardoso, C., Silva, G. V., Fernandes, M., Schreiber, R., Oliveira, E. M., Jiménez-Quevedo, P., et al. (2007). Catheter based delivery of adipose-derived stem cells in a large animal chronic ischemia model improves myocardial healing. European Heart Journal, 28(suppl I), 227.

    Google Scholar 

  45. Lendeckel, S., Jödicke, A., Christophis, P., Heidinger, K., Wolff, J., Fraser, J. K., et al. (2004). Autologous stem cells (adipose) and fibrin glue used to treat widespread traumatic calvarial defects: case report. Journal of Cranio-maxillo-facial Surgery, 32, 370–373.

    Article  PubMed  Google Scholar 

  46. García-Olmo, D., García-Arranz, M., García, L. G., Cuellar, E. S., Blanco, I. F., Prianes, L. A., et al. (2003). Autologous stem cell transplantation for treatment of rectovaginal fistula in perianal Crohn’s disease: a new cell-based therapy. International Journal of Colorectal Disease, 18, 451–454.

    Article  PubMed  Google Scholar 

  47. García-Olmo, D., García-Arranz, M., Herreros, D., Pascual, I., Peiro, C., & Rodríguez-Montes, J. A. (2005). A phase I clinical trial of the treatment of Crohn’s fistula by adipose mesenchymal stem cell transplantation. Diseases of the Colon & Rectum, 48, 1416–1423.

    Article  Google Scholar 

  48. Yoshimura, K., Matsumoto, D., & Gonda, K. A clinical trial of soft-tissue augmentation by lipoinjection with adipose-derived stromal cells (ASCs). International Fat Applied Technology Society (IFATS); Third Annual Meeting, September 10–13, 2005, Charlottesville VA, p. 9.

  49. Stosich, M. S., & Mao, J. J. (2007). Adipose tissue engineering from human adult stem cells: Clinical implications in plastic and reconstructive surgery. Plastic and Reconstructive Surgery, 119, 71–83.

    Article  PubMed  CAS  Google Scholar 

  50. Fraser, J. K., Schreiber, R., Strem, B., Zhu, M., Alfonso, Z., Wulur, I., et al. (2006). Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nature Clinical Practice Cardiovascular Medicine, 3(suppl I), S33–S37.

    Article  PubMed  CAS  Google Scholar 

  51. Rubio, D., Garcia-Castro, J., Martin, M. C., de la Fuente, R., Cigudosa, J. C., Lloyd, A. C., et al. (2005). Spontaneous human adult stem cell transformation. Cancer Research, 65, 3035–3039.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Fernández-Avilés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanz-Ruiz, R., Fernández Santos, M.E., Domínguez Muñoa, M. et al. Adipose Tissue-derived Stem Cells: The Friendly Side of a Classic Cardiovascular Foe. J. of Cardiovasc. Trans. Res. 1, 55–63 (2008). https://doi.org/10.1007/s12265-007-9006-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-007-9006-9

Keywords

Navigation