Skip to main content

Advertisement

Log in

Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Diabetic neuropathic pain (DNP) is the most common disabling complication of diabetes. Emerging evidence has linked the pathogenesis of DNP to the aberrant sprouting of sensory axons into the epidermal area; however, the underlying molecular events remain poorly understood. Here we found that an axon guidance molecule, Netrin-3 (Ntn-3), was expressed in the sensory neurons of mouse dorsal root ganglia (DRGs), and downregulation of Ntn-3 expression was highly correlated with the severity of DNP in a diabetic mouse model. Genetic ablation of Ntn-3 increased the intra-epidermal sprouting of sensory axons and worsened the DNP in diabetic mice. In contrast, the elevation of Ntn-3 levels in DRGs significantly inhibited the intra-epidermal axon sprouting and alleviated DNP in diabetic mice. In conclusion, our studies identified Ntn-3 as an important regulator of DNP pathogenesis by gating the aberrant sprouting of sensory axons, indicating that Ntn-3 is a potential druggable target for DNP treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J. Painful and painless diabetic neuropathies: What is the difference? Curr Diab Rep 2019, 19: 32.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Feldman EL, Nave KA, Jensen TS, Bennett DLH. New horizons in diabetic neuropathy: Mechanisms, bioenergetics, and pain. Neuron 2017, 93: 1296–1313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Themistocleous AC, Ramirez JD, Shillo PR, Lees JG, Selvarajah D, Orengo C, et al. The pain in neuropathy study (PiNS): A cross-sectional observational study determining the somatosensory phenotype of painful and painless diabetic neuropathy. Pain 2016, 157: 1132–1145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Callaghan BC, Cheng HT, Stables CL, Smith AL, Feldman EL. Diabetic neuropathy: Clinical manifestations and current treatments. Lancet Neurol 2012, 11: 521–534.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Galer BS, Gianas A, Jensen MP. Painful diabetic polyneuropathy: Epidemiology, pain description, and quality of life. Diabetes Res Clin Pract 2000, 47: 123–128.

    Article  CAS  PubMed  Google Scholar 

  6. Alleman CJM, Westerhout KY, Hensen M, Chambers C, Stoker M, Long S, et al. Humanistic and economic burden of painful diabetic peripheral neuropathy in Europe: A review of the literature. Diabetes Res Clin Pract 2015, 109: 215–225.

    Article  PubMed  Google Scholar 

  7. Pop-Busui R, Boulton AJM, Feldman EL, Bril V, Freeman R, Malik RA, et al. Diabetic neuropathy: A position statement by the American diabetes association. Diabetes Care 2017, 40: 136–154.

    Article  CAS  PubMed  Google Scholar 

  8. Jensen TS, Backonja MM, Hernández Jiménez S, Tesfaye S, Valensi P, Ziegler D. New perspectives on the management of diabetic peripheral neuropathic pain. Diab Vasc Dis Res 2006, 3: 108–119.

    Article  PubMed  Google Scholar 

  9. Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, et al. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018, 144: 177–191.

    Article  PubMed  Google Scholar 

  10. Cheng HT, Dauch JR, Porzio MT, Yanik BM, Hsieh W, Smith AG, et al. Increased axonal regeneration and swellings in intraepidermal nerve fibers characterize painful phenotypes of diabetic neuropathy. J Pain 2013, 14: 941–947.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lauria G, Devigili G. Skin biopsy as a diagnostic tool in peripheral neuropathy. Nat Clin Pract Neurol 2007, 3: 546–557.

    Article  PubMed  Google Scholar 

  12. Bönhof GJ, Strom A, Püttgen S, Ringel B, Brüggemann J, Bódis K, et al. Patterns of cutaneous nerve fibre loss and regeneration in type 2 diabetes with painful and painless polyneuropathy. Diabetologia 2017, 60: 2495–2503.

    Article  PubMed  Google Scholar 

  13. Galosi E, la Cesa S, di Stefano G, Karlsson P, Fasolino A, Leone C, et al. A pain in the skin. Regenerating nerve sprouts are distinctly associated with ongoing burning pain in patients with diabetes. Eur J Pain 2018, 22: 1727–1734.

  14. Üçeyler N, Vollert J, Broll B, Riediger N, Langjahr M, Saffer N, et al. Sensory profiles and skin innervation of patients with painful and painless neuropathies. Pain 2018, 159: 1867–1876.

    Article  PubMed  Google Scholar 

  15. Hollis ER 2nd. Axon guidance molecules and neural circuit remodeling after spinal cord injury. Neurotherapeutics 2016, 13: 360–369.

    Article  PubMed  Google Scholar 

  16. Domínguez-Romero ME, Slater PG. Unraveling axon guidance during axotomy and regeneration. Int J Mol Sci 2021, 22: 8344.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Brignani S, Raj DDA, Schmidt ERE, Düdükcü Ö, Adolfs Y, de Ruiter AA, et al. Remotely produced and axon-derived netrin-1 instructs GABAergic neuron migration and dopaminergic substantia nigra development. Neuron 2020, 107: 684-702.e9.

    Article  CAS  PubMed  Google Scholar 

  18. Dominici C, Moreno-Bravo JA, Puiggros SR, Rappeneau Q, Rama N, Vieugue P, et al. Floor-plate-derived netrin-1 is dispensable for commissural axon guidance. Nature 2017, 545: 350–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goldman JS, Ashour MA, Magdesian MH, Tritsch NX, Harris SN, Christofi N, et al. Netrin-1 promotes excitatory synaptogenesis between cortical neurons by initiating synapse assembly. J Neurosci 2013, 33: 17278–17289.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen GQ, Kang SS, Wang ZH, Ahn EH, Xia YY, Liu X, et al. Netrin-1 receptor UNC5C cleavage by active δ-secretase enhances neurodegeneration, promoting Alzheimer's disease pathologies. Sci Adv 2021, 7: eabe4499.

  21. Lin L, Lesnick TG, Maraganore DM, Isacson O. Axon guidance and synaptic maintenance: Preclinical markers for neurodegenerative disease and therapeutics. Trends Neurosci 2009, 32: 142–149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol 2009, 10: 239.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang H, Copeland NG, Gilbert DJ, Jenkins NA, Tessier-Lavigne M. Netrin-3, a mouse homolog of human NTN2L, is highly expressed in sensory ganglia and shows differential binding to netrin receptors. J Neurosci 1999, 19: 4938–4947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sun C, Zhang F, Ge XJ, Yan TT, Chen XM, Shi XL, et al. SIRT1 improves insulin sensitivity under insulin-resistant conditions by repressing PTP1B. Cell Metab 2007, 6: 307–319.

    Article  CAS  PubMed  Google Scholar 

  25. Jolivalt CG, Frizzi KE, Guernsey L, Marquez A, Ochoa J, Rodriguez M, et al. Peripheral neuropathy in mouse models of diabetes. Curr Protoc Mouse Biol 2016, 6: 223–255.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kraeuter AK, Guest PC, Sarnyai Z. The open field test for measuring locomotor activity and anxiety-like behavior. Methods Mol Biol 2019, 1916: 99–103.

    Article  CAS  PubMed  Google Scholar 

  27. Chadman KK, Gong S, Scattoni ML, Boltuck SE, Gandhy SU, Heintz N, et al. Minimal aberrant behavioral phenotypes of neuroligin-3 R451C knockin mice. Autism Res 2008, 1: 147–158.

    Article  PubMed  PubMed Central  Google Scholar 

  28. He WW, Bai G, Zhou HH, Wei N, White NM, Lauer J, et al. CMT2D neuropathy is linked to the neomorphic binding activity of glycyl-tRNA synthetase. Nature 2015, 526: 710–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wang GH, Jiang XY, Pu HJ, Zhang WT, An CR, Hu XM, et al. Scriptaid, a novel histone deacetylase inhibitor, protects against traumatic brain injury via modulation of PTEN and AKT pathway: Scriptaid protects against TBI via AKT. Neurotherapeutics 2013, 10: 124–142.

    Article  PubMed  Google Scholar 

  30. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods 1994, 53: 55–63.

    Article  CAS  PubMed  Google Scholar 

  31. de la Calle JL, Mena MA, González-Escalada JR, Paíno CL. Intrathecal transplantation of neuroblastoma cells decreases heat hyperalgesia and cold allodynia in a rat model of neuropathic pain. Brain Res Bull 2002, 59: 205–211.

    Article  PubMed  Google Scholar 

  32. Manering NA, Reuter T, Ihmsen H, Yeomans DC, Tzabazis A. High-dose remifentanil prevents development of thermal hyperalgesia in a neuropathic pain model. Br J Anaesth 2013, 110: 287–292.

    Article  CAS  PubMed  Google Scholar 

  33. Zhu SA, Zhu JX, Zhen GH, Hu YH, An SB, Li YS, et al. Subchondral bone osteoclasts induce sensory innervation and osteoarthritis pain. J Clin Invest 2019, 129: 1076–1093.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Cheng YL, Liu J, Luan Y, Liu ZY, Lai HJ, Zhong WL, et al. Sarm1 gene deficiency attenuates diabetic peripheral neuropathy in mice. Diabetes 2019, 68: 2120–2130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Poitras T, Chandrasekhar A, McCoy L, Komirishetty P, Areti A, Webber CA, et al. Selective sensory axon reinnervation and TRPV1 activation. Mol Neurobiol 2019, 56: 7144–7158.

    Article  CAS  PubMed  Google Scholar 

  36. Liu HQ, Dolkas J, Hoang K, Angert M, Chernov AV, Remacle AG, et al. The alternatively spliced fibronectin CS1 isoform regulates IL-17A levels and mechanical allodynia after peripheral nerve injury. J Neuroinflammation 2015, 12: 158.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Choi J, Kim DS, Kim J, Jeong W, Lee HW, Park SW, et al. Better nerve regeneration with distally based fascicular turnover flap than with conventional autologous nerve graft in a rat sciatic nerve defect model. J Plast Reconstr Aesthet Surg 2020, 73: 214–221.

    Article  PubMed  Google Scholar 

  38. Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K, Gross RW, et al. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat Neurosci 2014, 17: 1351–1361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hylden JL, Wilcox GL. Intrathecal morphine in mice: A new technique. Eur J Pharmacol 1980, 67: 313–316.

    Article  CAS  PubMed  Google Scholar 

  40. Chen G, Xie RG, Gao YJ, Xu ZZ, Zhao LX, Bang SS, et al. β-arrestin-2 regulates NMDA receptor function in spinal lamina II neurons and duration of persistent pain. Nat Commun 2016, 7: 12531.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Guo K, Eid SA, Elzinga SE, Pacut C, Feldman EL, Hur J. Genome-wide profiling of DNA methylation and gene expression identifies candidate genes for human diabetic neuropathy. Clin Epigenetics 2020, 12: 123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hur J, Sullivan KA, Callaghan BC, Pop-Busui R, Feldman EL. Identification of factors associated with sural nerve regeneration and degeneration in diabetic neuropathy. Diabetes Care 2013, 36: 4043–4049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Løseth S, Stålberg E, Jorde R, Mellgren SI. Early diabetic neuropathy: Thermal thresholds and intraepidermal nerve fibre density in patients with normal nerve conduction studies. J Neurol 2008, 255: 1197–1202.

    Article  PubMed  Google Scholar 

  44. Zhou JY, Zhou SW. Inflammation: therapeutic targets for diabetic neuropathy. Mol Neurobiol 2014, 49: 536–546.

    Article  CAS  PubMed  Google Scholar 

  45. Anand P, Bley K. Topical capsaicin for pain management: Therapeutic potential and mechanisms of action of the new high-concentration capsaicin 8% patch. Br J Anaesth 2011, 107: 490–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yoo M, Sharma N, Pasnoor M, Kluding PM. Painful diabetic peripheral neuropathy: Presentations, mechanisms, and exercise therapy. J Diabetes Metab 2013, Suppl 10: 005.

  47. Singh B, Singh V, Krishnan A, Koshy K, Martinez JA, Cheng C, et al. Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain 2014, 137: 1051–1067.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cheng HT, Dauch JR, Hayes JM, Yanik BM, Feldman EL. Nerve growth factor/p38 signaling increases intraepidermal nerve fiber densities in painful neuropathy of type 2 diabetes. Neurobiol Dis 2012, 45: 280–287.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Naihe Jing (Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences) for discussing this project, and Beibei Wang (Center of Cryo-Electron Microscopy, Zhejiang University) for technical support. We are also grateful to Samuel L. Pfaff (The Salk Institute for Biological Studies) for providing reagents. This work was supported by the Zhejiang Provincial Natural Science Foundation of China (LY19H090030), the Science and Technology Innovation 2030-Major Project of Brain Science and Brain-like Research (2021ZD0202501), the Excellent Innovation Program of Hangzhou Municipal University in 2019, and the National Natural Science Foundation of China (82150003, 91949104, and 31871022).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ge Bai or Huaqing Liu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 976 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, W., Huang, X., Yu, Z. et al. Netrin-3 Suppresses Diabetic Neuropathic Pain by Gating the Intra-epidermal Sprouting of Sensory Axons. Neurosci. Bull. 39, 745–758 (2023). https://doi.org/10.1007/s12264-022-01011-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-01011-8

Keywords

Navigation