Skip to main content
Log in

Evidence in Support of Analogical Reasoning Improvements with Executive Attention Intervention in Healthy Young Adults

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Analogical reasoning improvement is important in educational outcome improvement. Inspired by recent ideas and evidence, we applied anti-saccade task training as an executive attention intervention and tested whether it could improve analogical reasoning performance. A serial-task paradigm was applied where participants performed an anti-saccade followed by an analogical reasoning task including a perception condition. The experimental group finished the anti-saccade task in which the ratio of anti-saccade trials to pro-saccade trials was 5:1 while the counterpart was 1:1 in the active control group. Also, a blank control group was established where participants merely finished the analogical reasoning task. Event-related electroencephalographic (EEG) data were recorded when participants were performing the executive attention and analogical reasoning tasks. In addition, their resting state EEG was collected before and after the executive attention intervention. Behaviorally, the experimental group reacted significantly faster than the other two groups in analogical reasoning but not in perception. At the neural level, in the experimental group alone, the anti-saccade trials elicited a smaller N2 than pro-saccade trials and the resting alpha power was improved after executive attention intervention. No significant difference in P2 was found between the two groups in analogical reasoning or perception but the experimental group showed a larger late positive component than the active control group in analogical reasoning. We also found that the late positive component mediated the relationship between the N2 of anti-saccade trials and analogical reasoning reaction times in the experimental group. We further discussed the role of executive attention in the analogical reasoning process, which may pave the way for the future reliable improvement of fluid intelligence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gentner D. Structure-mapping: A theoretical framework for analogy. Cogn Sci 1983, 7: 155–170.

    Article  Google Scholar 

  2. Gentner D. Bootstrapping the mind: Analogical processes and symbol systems. Cogn Sci 2010, 34: 752–775.

    Article  PubMed  Google Scholar 

  3. Penn DC, Holyoak KJ, Povinelli DJ. Darwin’s mistake: Explaining the discontinuity between human and nonhuman minds. Behav Brain Sci 2008, 31: 109–130.

    Article  PubMed  Google Scholar 

  4. Cattell RB. Intelligence: Its Structure, Growth and Action, 1st edn. Elsevier press, Amsterdam, 1987, p 265.

    Google Scholar 

  5. Goldwater MB, Schalk L. Relational categories as a bridge between cognitive and educational research. Psychol Bull 2016, 142: 729–757.

    Article  PubMed  Google Scholar 

  6. Gray ME, Holyoak KJ. Individual differences in relational reasoning. Mem Cognit 2020, 48: 96–110.

    Article  PubMed  Google Scholar 

  7. Andrews G, Bohadana GR. Does solving distant analogies facilitate relational integration? J Cogn Psychol 2018, 30: 270–280.

    Article  Google Scholar 

  8. Kubricht JR, Lu H, Holyoak KJ. Individual differences in spontaneous analogical transfer. Mem Cognit 2017, 45: 576–588.

    Article  PubMed  Google Scholar 

  9. Vendetti MS, Wu A, Holyoak KJ. Far-out thinking: Generating solutions to distant analogies promotes relational thinking. Psychol Sci 2014, 25: 928–933.

    Article  PubMed  Google Scholar 

  10. Posner MI, DiGirolamo GJ. Executive attention: Conflict, target detection, and cognitive control. In: The Attentive Brain. 1st ed. Cambridge: The MIT Press, 1998: 401–423.

  11. Burgoyne AP, Engle RW. Attention control: A cornerstone of higher-order cognition. Curr Dir Psychol Sci 2020, 29: 624–630.

    Article  Google Scholar 

  12. Engle RW. Working memory and executive attention: A revisit. Perspect Psychol Sci 2018, 13: 190–193.

    Article  PubMed  Google Scholar 

  13. Duncan J, Assem M, Shashidhara S. Integrated intelligence from distributed brain activity. Trends Cogn Sci 2020, 24: 838–852.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Pozuelos JP, Combita LM, Abundis A, Paz-Alonso PM, Conejero Á, Guerra S. Metacognitive scaffolding boosts cognitive and neural benefits following executive attention training in children. Dev Sci 2019, 22: e12756.

    Article  PubMed  Google Scholar 

  15. Duncan J, Owen AM. Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 2000, 23: 475–483.

    Article  CAS  PubMed  Google Scholar 

  16. Richland LE, Burchinal MR. Early executive function predicts reasoning development. Psychol Sci 2013, 24: 87–92.

    Article  PubMed  Google Scholar 

  17. Hallett PE. Primary and secondary saccades to goals defined by instructions. Vision Res 1978, 18: 1279–1296.

    Article  CAS  PubMed  Google Scholar 

  18. Draheim C, Tsukahara JS, Martin JD, Mashburn CA, Engle RW. A toolbox approach to improving the measurement of attention control. J Exp Psychol Gen 2021, 150: 242–275.

    Article  PubMed  Google Scholar 

  19. Shipstead Z, Harrison TL, Engle RW. Working memory capacity and fluid intelligence: Maintenance and disengagement. Perspect Psychol Sci 2016, 11: 771–799.

    Article  PubMed  Google Scholar 

  20. Rey-Mermet A, Gade M, Souza AS, von Bastian CC, Oberauer K. Is executive control related to working memory capacity and fluid intelligence? J Exp Psychol Gen 2019, 148: 1335–1372.

    Article  PubMed  Google Scholar 

  21. Unsworth N, Spillers GJ, Brewer GA, McMillan B. Attention control and the antisaccade task: A response time distribution analysis. Acta Psychol 2011, 137: 90–100.

    Article  Google Scholar 

  22. Unsworth N, Schrock JC, Engle RW. Working memory capacity and the antisaccade task: Individual differences in voluntary saccade control. J Exp Psychol Learn Mem Cogn 2004, 30: 1302–1321.

    Article  PubMed  Google Scholar 

  23. Kasneci E, Kasneci G, Trautwein U, Appel T, Tibus M, Jaeggi SM, et al. Do your eye movements reveal your performance on an IQ test? A study linking eye movements and socio-demographic information to fluid intelligence. PLoS One 2022, 17: e0264316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Guarino KF, Wakefield EM, Morrison RG, Richland LE. Exploring how visual attention, inhibitory control, and co-speech gesture instruction contribute to children’s analogical reasoning ability. Cogn Dev 2021, 58: 101040.

    Article  Google Scholar 

  25. Liu Q, Liu Y, Leng X, Han J, Xia F, Chen H. Impact of chronic stress on attention control: Evidence from behavioral and event-related potential analyses. Neurosci Bull 2020, 36: 1395–1410.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Mueller SC, Swainson R, Jackson GM. ERP indices of persisting and current inhibitory control: A study of saccadic task switching. Neuroimage 2009, 45: 191–197.

    Article  CAS  PubMed  Google Scholar 

  27. Bigman Z, Pratt H. Time course and nature of stimulus evaluation in category induction as revealed by visual event-related potentials. Biol Psychol 2004, 66: 99–128.

    Article  PubMed  Google Scholar 

  28. Chen A, Luo Y, Wang Q, Yuan J, Yao D, Li H. Electrophysiological correlates of category induction: PSW amplitude as an index of identifying shared attributes. Biol Psychol 2007, 76: 230–238.

    Article  PubMed  Google Scholar 

  29. Li F, Luo Y, Cao B, Li H. Electrophysiological correlates of inductive generalization. J Psychophysiol 2009, 23: 27–34.

    Article  CAS  Google Scholar 

  30. Qiu J, Li H, Chen A, Zhang Q. The neural basis of analogical reasoning: An event-related potential study. Neuropsychologia 2008, 46: 3006–3013.

    Article  PubMed  Google Scholar 

  31. Bonnefond M, Jensen O. Alpha oscillations serve to protect working memory maintenance against anticipated distracters. Curr Biol 2012, 22: 1969–1974.

    Article  CAS  PubMed  Google Scholar 

  32. Klimesch W. Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 2012, 16: 606–617.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Klimesch W, Sauseng P, Hanslmayr S. EEG alpha oscillations: The inhibition-timing hypothesis. Brain Res Rev 2007, 53: 63–88.

    Article  PubMed  Google Scholar 

  34. Tang D, Hu L, Chen A. The neural oscillations of conflict adaptation in the human frontal region. Biol Psychol 2013, 93: 364–372.

    Article  PubMed  Google Scholar 

  35. van Diepen RM, Foxe JJ, Mazaheri A. The functional role of alpha-band activity in attentional processing: The Current Zeitgeist and future outlook. Curr Opin Psychol 2019, 29: 229–238.

    Article  PubMed  Google Scholar 

  36. Knowles MM, Wells A. Single dose of the attention training technique increases resting alpha and beta-oscillations in frontoparietal brain networks: A randomized controlled comparison. Front Psychol 2018, 9: 1768.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tsukahara JS, Harrison TL, Draheim C, Martin JD, Engle RW. Attention control: The missing link between sensory discrimination and intelligence. Atten Percept Psychophys 2020, 82: 3445–3478.

    Article  PubMed  Google Scholar 

  38. Luck SJ. Electrophysiological Correlates of the Focusing of Attention within Complex Visual Scenes: N2pc and Related ERP Components, Oxford University Press, New York, 2012, pp 329–360.

    Google Scholar 

  39. Thompson RK, Oden DL, Boysen ST. Language-naive chimpanzees (Pan troglodytes) judge relations between relations in a conceptual matching-to-sample task. J Exp Psychol Anim Behav Process 1997, 23: 31–43.

    Article  CAS  PubMed  Google Scholar 

  40. Smith R, Keramatian K, Christoff K. Localizing the rostrolateral prefrontal cortex at the individual level. NeuroImage 2007, 36: 1387–1396.

    Article  PubMed  Google Scholar 

  41. Flemming TM, Kennedy EH. Chimpanzee (Pan troglodytes) relational matching: Playing by their own (analogical) rules. J Comp Psychol 2011, 125: 207–215.

    Article  PubMed  Google Scholar 

  42. Alain C. Breaking the wave: Effects of attention and learning on concurrent sound perception. Hear Res 2007, 229: 225–236.

    Article  PubMed  Google Scholar 

  43. Wunderlich A, Gramann K. Eye movement-related brain potentials during assisted navigation in real-world environments. Eur J Neurosci 2021, 54: 8336–8354.

    Article  PubMed  Google Scholar 

  44. Smid CR, Karbach J, Steinbeis N. Toward a science of effective cognitive training. Curr Dir Psychol Sci 2020, 29: 531–537.

    Article  Google Scholar 

  45. Steinbeis N, Over H. Enhancing behavioral control increases sharing in children. J Exp Child Psychol 2017, 159: 310–318.

    Article  PubMed  Google Scholar 

  46. Clayson PE, Larson MJ. Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia 2011, 49: 1953–1961.

    Article  PubMed  Google Scholar 

  47. Lo SL. A meta-analytic review of the event-related potentials (ERN and N2) in childhood and adolescence: Providing a developmental perspective on the conflict monitoring theory. Dev Rev 2018, 48: 82–112.

    Article  Google Scholar 

  48. Falkenstein M, Gajewski PD. Changes of electrical brain activity due to cognitive training in old adults and older industrial workers. In: Cognitive Training: An Overview of Features and Applications. Cham: Springer International Publishing, 2020: 369–379.

  49. Gajewski PD, Falkenstein M. ERP and behavioral effects of physical and cognitive training on working memory in aging: A randomized controlled study. Neural Plast 2018, 2018: 3454835.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ziegler DA, Simon AJ, Gallen CL, Skinner S, Janowich JR, Volponi JJ, et al. Closed-loop digital meditation improves sustained attention in young adults. Nat Hum Behav 2019, 3: 746–757.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Starr A, Vendetti MS, Bunge SA. Eye movements provide insight into individual differences in children’s analogical reasoning strategies. Acta Psychol (Amst) 2018, 186: 18–26.

    Article  PubMed  Google Scholar 

  52. Thibaut JP, French RM. Analogical reasoning, control and executive functions: A developmental investigation with eye-tracking. Cogn Dev 2016, 38: 10–26.

    Article  Google Scholar 

  53. Guarino K, Morrison R, Richland L, Wakefield E. Looking patterns during analogical reasoning: Generalizable or task-specific? CogSci, 2019: 387–392.

  54. Glady Y, French RM, Thibaut JP. Children’s failure in analogical reasoning tasks: A problem of focus of attention and information integration? Front Psychol 2017, 8: 707.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 2007, 39: 175–191.

    Article  PubMed  Google Scholar 

  56. Delorme A, Makeig S. EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 2004, 134: 9–21.

    Article  PubMed  Google Scholar 

  57. Niedeggen M, Hesselmann G, Sahraie A, Milders M. ERPs predict the appearance of visual stimuli in a temporal selection task. Brain Res 2006, 1097: 205–215.

    Article  CAS  PubMed  Google Scholar 

  58. Wongupparaj P, Sumich A, Wickens M, Kumari V, Morris RG. Individual differences in working memory and general intelligence indexed by P200 and P300: A latent variable model. Biol Psychol 2018, 139: 96–105.

    Article  PubMed  Google Scholar 

  59. Wu X, Jia H, Wang E, Du C, Wu X, Dang C. Vertical position of Chinese power words influences power judgments: Evidence from spatial compatibility task and event-related Potentials. Int J Psychophysiol 2016, 102: 55–61.

    Article  PubMed  Google Scholar 

  60. Preacher KJ, Hayes AF. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav Res Methods Instrum Comput 2004, 36: 717–731.

    Article  PubMed  Google Scholar 

  61. Chiu YC, Jiang J, Egner T. The caudate nucleus mediates learning of stimulus-control state associations. J Neurosci 2017, 37: 1028–1038.

    Article  CAS  PubMed  Google Scholar 

  62. Jiang J, Bramão I, Khazenzon A, Wang SF, Johansson M, Wagner AD. Temporal dynamics of memory-guided cognitive control and generalization of control via overlapping associative memories. J Neurosci 2020, 40: 2343–2356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Wiemers EA, Redick TS. Working memory capacity and intra-individual variability of proactive control. Acta Psychol (Amst) 2018, 182: 21–31.

    Article  PubMed  Google Scholar 

  64. Jones LB, Rothbart MK, Posner MI. Development of executive attention in preschool children. Dev Sci 2003, 6: 498–504.

    Article  Google Scholar 

  65. Diamond A. Executive functions. Annu Rev Psychol 2013, 64: 135–168.

    Article  PubMed  Google Scholar 

  66. Doumas LAA, Morrison RG, Richland LE. Individual differences in relational learning and analogical reasoning: A computational model of longitudinal change. Front Psychol 2018, 9: 1235.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Morrison RG, Doumas LAA, Richland LE. A computational account of children’s analogical reasoning: Balancing inhibitory control in working memory and relational representation. Dev Sci 2011, 14: 516–529.

    Article  PubMed  Google Scholar 

  68. Morrison RG, Krawczyk DC, Holyoak KJ, Hummel JE, Chow TW, Miller BL, et al. A neurocomputational model of analogical reasoning and its breakdown in frontotemporal lobar degeneration. J Cogn Neurosci 2004, 16: 260–271.

    Article  PubMed  Google Scholar 

  69. Richland LE, Chan TK, Morrison RG, Au TKF. Young children’s analogical reasoning across cultures: Similarities and differences. J Exp Child Psychol 2010, 105: 146–153.

    Article  PubMed  Google Scholar 

  70. Richland LE, Morrison RG, Holyoak KJ. Children’s development of analogical reasoning: Insights from scene analogy problems. J Exp Child Psychol 2006, 94: 249–273.

    Article  PubMed  Google Scholar 

  71. Viskontas IV, Morrison RG, Holyoak KJ, Hummel JE, Knowlton BJ. Relational integration, inhibition, and analogical reasoning in older adults. Psychol Aging 2004, 19: 581–591.

    Article  PubMed  Google Scholar 

  72. Yu X, Zhang M, Chen Y, Deng Z, Chen Y, Zhang H, et al. The role of inhibitory control in the development of analogical reasoning: From general to specific. Br J Dev Psychol 2020, 38: 594–615.

    Article  PubMed  Google Scholar 

  73. Simms NK, Frausel RR, Richland LE. Working memory predicts children’s analogical reasoning. J Exp Child Psychol 2018, 166: 160–177.

    Article  PubMed  Google Scholar 

  74. Haegens S, Händel BF, Jensen O. Top-down controlled alpha band activity in somatosensory areas determines behavioral performance in a discrimination task. J Neurosci 2011, 31: 5197–5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. van Ede F, de Lange F, Jensen O, Maris E. Orienting attention to an upcoming tactile event involves a spatially and temporally specific modulation of sensorimotor alpha- and beta-band oscillations. J Neurosci 2011, 31: 2016–2024.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Capotosto P, Babiloni C, Romani GL, Corbetta M. Frontoparietal cortex controls spatial attention through modulation of anticipatory alpha rhythms. J Neurosci 2009, 29: 5863–5872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Händel BF, Haarmeier T, Jensen O. Alpha oscillations correlate with the successful inhibition of unattended stimuli. J Cogn Neurosci 2011, 23: 2494–2502.

    Article  PubMed  Google Scholar 

  78. Belyusar D, Snyder AC, Frey HP, Harwood MR, Wallman J, Foxe JJ. Oscillatory alpha-band suppression mechanisms during the rapid attentional shifts required to perform an anti-saccade task. Neuroimage 2013, 65: 395–407.

    Article  PubMed  Google Scholar 

  79. Cho S, Moody TD, Fernandino L, Mumford JA, Poldrack RA, Cannon TD, et al. Common and dissociable prefrontal loci associated with component mechanisms of analogical reasoning. Cereb Cortex 2009, 20: 524–533.

    Article  PubMed  Google Scholar 

  80. Veen VV, Carter CS. The timing of action-monitoring processes in the anterior cingulate cortex. J Cogn Neurosci 2002, 14: 593–602.

    Article  PubMed  Google Scholar 

  81. Dien J, Spencer KM, Donchin E. Parsing the late positive complex: Mental chronometry and the ERP components that inhabit the neighborhood of the P300. Psychophysiology 2004, 41: 665–678.

    Article  PubMed  Google Scholar 

  82. Polich J. Updating P300: An integrative theory of P3a and P3b. Clin Neurophysiol 2007, 118: 2128–2148.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fawcett TW, Frankenhuis WE. Adaptive explanations for sensitive windows in development. Front Zool 2015, 12: S3.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Stamps JA, Frankenhuis WE. Bayesian models of development. Trends Ecol Evol 2016, 31: 260–268.

    Article  PubMed  Google Scholar 

  85. Enge S, Behnke A, Fleischhauer M, Küttler L, Kliegel M, Strobel A. No evidence for true training and transfer effects after inhibitory control training in young healthy adults. J Exp Psychol Learn Mem Cogn 2014, 40: 987–1001.

    Article  PubMed  Google Scholar 

  86. Hammer R, Paul EJ, Hillman CH, Kramer AF, Cohen NJ, Barbey AK. Individual differences in analogical reasoning revealed by multivariate task-based functional brain imaging. Neuroimage 2019, 184: 993–1004.

    Article  PubMed  Google Scholar 

  87. Duncan J. Intelligence tests predict brain response to demanding task events. Nat Neurosci 2003, 6: 207–208.

    Article  CAS  PubMed  Google Scholar 

  88. Fjell AM, Westlye LT, Amlien I, Tamnes CK, Grydeland H, Engvig A, et al. High-expanding cortical regions in human development and evolution are related to higher intellectual abilities. Cereb Cortex 2013, 25: 26–34.

    Article  PubMed  Google Scholar 

  89. Rueda MR. Attention in the heart of intelligence. Trends Neurosci Educ 2018, 13: 26–33.

    Article  Google Scholar 

  90. Raven J, Raven JC, Court JH. Manual for Raven’s Progressive Matricesand Vocabulary Scales. Oxford Pyschologists, Oxford, 1998.

    Google Scholar 

  91. Sala G, Gobet F. Working memory training in typically developing children: A meta-analysis of the available evidence. Dev Psychol 2017, 53: 671–685.

    Article  PubMed  Google Scholar 

  92. Sala G, Gobet F. Cognitive training does not enhance general cognition. Trends Cogn Sci 2019, 23: 9–20.

    Article  PubMed  Google Scholar 

  93. Long Q, Hu N, Li H, Zhang Y, Yuan J, Chen A. Suggestion of cognitive enhancement improves emotion regulation. Emotion 2020, 20: 866–873.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (32171040 and 31900803), and the Graduate Research Innovation Project of Chongqing (CYS20094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antao Chen.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Y., Li, Q., Zhang, M. et al. Evidence in Support of Analogical Reasoning Improvements with Executive Attention Intervention in Healthy Young Adults. Neurosci. Bull. 38, 1476–1490 (2022). https://doi.org/10.1007/s12264-022-00941-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00941-7

Keywords

Navigation