Skip to main content

Advertisement

Log in

P2X7/P2X4 Receptors Mediate Proliferation and Migration of Retinal Microglia in Experimental Glaucoma in Mice

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Microglia are involved in the inflammatory response and retinal ganglion cell damage in glaucoma. Here, we investigated how microglia proliferate and migrate in a mouse model of chronic ocular hypertension (COH). In COH retinas, the microglial proliferation that occurred was inhibited by the P2X7 receptor (P2X7R) blocker BBG or P2X7R knockout, but not by the P2X4R blocker 5-BDBD. Treatment of primary cultured microglia with BzATP, a P2X7R agonist, mimicked the effects of cell proliferation and migration in COH retinas through the intracellular MEK/ERK signaling pathway. Transwell migration assays showed that the P2X4R agonist CTP induced microglial migration, which was completely blocked by 5-BDBD. In vivo and in vitro experiments demonstrated that ATP, released from activated Müller cells through connexin43 hemichannels, acted on P2X7R to induce microglial proliferation, and acted on P2X4R/P2X7R (mainly P2X4R) to induce microglial migration. Our results suggest that inhibiting the interaction of Müller cells and microglia may attenuate microglial proliferation and migration in glaucoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bringmann A, Reichenbach A. Role of Muller cells in retinal degenerations. Front Biosci 2001, 6: E72–E92.

    Article  CAS  PubMed  Google Scholar 

  2. Bringmann A, Pannicke T, Grosche J, Francke M, Wiedemann P, Skatchkov SN, et al. Müller cells in the healthy and diseased retina. Prog Retin Eye Res 2006, 25: 397–424.

    Article  CAS  PubMed  Google Scholar 

  3. Bringmann A, Iandiev I, Pannicke T, Wurm A, Hollborn M, Wiedemann P, et al. Cellular signaling and factors involved in Müller cell gliosis: Neuroprotective and detrimental effects. Prog Retin Eye Res 2009, 28: 423–451.

    Article  CAS  PubMed  Google Scholar 

  4. Cuenca N, Fernández-Sánchez L, Campello L, Maneu V, de la Villa P, Lax P, et al. Cellular responses following retinal injuries and therapeutic approaches for neurodegenerative diseases. Prog Retin Eye Res 2014, 43: 17–75.

    Article  CAS  PubMed  Google Scholar 

  5. Silverman SM, Wong WT. Microglia in the retina: Roles in development, maturity, and disease. Annu Rev Vis Sci 2018, 4: 45–77.

    Article  PubMed  Google Scholar 

  6. Rathnasamy G, Foulds WS, Ling EA, Kaur C. Retinal microglia - A key player in healthy and diseased retina. Prog Neurobiol 2019, 173: 18–40.

    Article  PubMed  Google Scholar 

  7. Vecino E, Rodriguez FD, Ruzafa N, Pereiro X, Sharma SC. Glia-neuron interactions in the mammalian retina. Prog Retin Eye Res 2016, 51: 1–40.

    Article  CAS  PubMed  Google Scholar 

  8. Reichenbach A, Bringmann A. Glia of the human retina. Glia 2020, 68: 768–796.

    Article  PubMed  Google Scholar 

  9. Bordone MP, González Fleitas MF, Pasquini LA, Bosco A, Sande PH, Rosenstein RE, et al. Involvement of microglia in early axoglial alterations of the optic nerve induced by experimental glaucoma. J Neurochem 2017, 142: 323–337.

    Article  CAS  PubMed  Google Scholar 

  10. Bosco A, Steele MR, Vetter ML. Early microglia activation in a mouse model of chronic glaucoma. J Comp Neurol 2011, 519: 599–620.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ebneter A, Casson RJ, Wood JP, Chidlow G. Microglial activation in the visual pathway in experimental glaucoma: Spatiotemporal characterization and correlation with axonal injury. Invest Ophthalmol Vis Sci 2010, 51: 6448–6460.

    Article  PubMed  Google Scholar 

  12. Langmann T. Microglia activation in retinal degeneration. J Leukoc Biol 2007, 81: 1345–1351.

    Article  CAS  PubMed  Google Scholar 

  13. Yuan L, Neufeld AH. Activated microglia in the human glaucomatous optic nerve head. J Neurosci Res 2001, 64: 523–532.

    Article  CAS  PubMed  Google Scholar 

  14. Wang MH, Wang X, Zhao L, Ma WX, Rodriguez IR, Fariss RN, et al. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci 2014, 34: 3793–3806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chong RS, Martin KR. Glial cell interactions and glaucoma. Curr Opin Ophthalmol 2015, 26: 73–77.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Wang MH, Wong WT. Microglia-Müller cell interactions in the retina. Adv Exp Med Biol 2014, 801: 333–338.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang MH, Ma WX, Zhao L, Fariss RN, Wong WT. Adaptive Müller cell responses to microglial activation mediate neuroprotection and coordinate inflammation in the retina. J Neuroinflammation 2011, 8: 173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Newman EA. Propagation of intercellular calcium waves in retinal astrocytes and Müller cells. J Neurosci 2001, 21: 2215–2223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gao F, Li F, Miao YY, Xu LJ, Zhao Y, Li Q, et al. Involvement of the MEK-ERK/p38-CREB/c-fos signaling pathway in Kir channel inhibition-induced rat retinal Müller cell gliosis. Sci Rep 2017, 7: 1480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Ji M, Miao YY, Dong LD, Chen J, Mo XF, Jiang SX, et al. Group I mGluR-mediated inhibition of Kir channels contributes to retinal Müller cell gliosis in a rat chronic ocular hypertension model. J Neurosci 2012, 32: 12744–12755.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Xue B, Xie YT, Xue Y, Hu N, Zhang GW, Guan HJ, et al. Involvement of P2X 7 receptors in retinal ganglion cell apoptosis induced by activated Müller cells. Exp Eye Res 2016, 153: 42–50.

    Article  CAS  PubMed  Google Scholar 

  22. Zhang ML, Zhao GL, Hou Y, Zhong SM, Xu LJ, Li F, et al. Rac1 conditional deletion attenuates retinal ganglion cell apoptosis by accelerating autophagic flux in a mouse model of chronic ocular hypertension. Cell Death Dis 2020, 11: 734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen J, Miao YY, Wang XH, Wang ZF. Elevation of p-NR2A(S1232) by Cdk5/p35 contributes to retinal ganglion cell apoptosis in a rat experimental glaucoma model. Neurobiol Dis 2011, 43: 455–464.

    Article  CAS  PubMed  Google Scholar 

  24. Dong LD, Gao F, Wang XH, Miao YY, Wang SY, Wu Y, et al. GluA2 trafficking is involved in apoptosis of retinal ganglion cells induced by activation of EphB/EphrinB reverse signaling in a rat chronic ocular hypertension model. J Neurosci 2015, 35: 5409–5421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu ST, Zhong SM, Li XY, Gao F, Li F, Zhang ML, et al. EphrinB/EphB forward signaling in Müller cells causes apoptosis of retinal ganglion cells by increasing tumor necrosis factor alpha production in rat experimental glaucomatous model. Acta Neuropathol Commun 2018, 6: 111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Gao F, Li F, Miao YY, Dong LD, Zhang SH, Wu JH, et al. Group I metabotropic glutamate receptor agonist DHPG modulates Kir4.1 protein and mRNA in cultured rat retinal Müller cells. Neurosci Lett 2015, 588: 12–17.

    Article  CAS  PubMed  Google Scholar 

  27. Gomes C, Ferreira R, George J, Sanches R, Rodrigues DI, Gonçalves N, et al. Activation of microglial cells triggers a release of brain-derived neurotrophic factor (BDNF) inducing their proliferation in an adenosine A2A receptor-dependent manner: A2A receptor blockade prevents BDNF release and proliferation of microglia. J Neuroinflammation 2013, 10: 16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Inman DM, Horner PJ. Reactive nonproliferative gliosis predominates in a chronic mouse model of glaucoma. Glia 2007, 55: 942–953.

    Article  CAS  PubMed  Google Scholar 

  29. Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. In vitro cell migration and invasion assays. J Vis Exp 2014, 88: 51046.

  30. Zhu K, Hu X, Chen H, Li F, Yin N, Liu AL, et al. Downregulation of circRNA DMNT3B contributes to diabetic retinal vascular dysfunction through targeting miR-20b-5p and BAMBI. EBioMedicine 2019, 49: 341–353.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Xiong GY, Yang LH, Chen Y, Fan ZN. Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am J Transl Res 2015, 7: 2262–2269.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Ho T, Vessey KA, Fletcher EL. Immunolocalization of the P2X4 receptor on neurons and glia in the mammalian retina. Neuroscience 2014, 277: 55–71.

    Article  CAS  PubMed  Google Scholar 

  33. Zhang YJ, Xu Y, Sun Q, Xue SD, Guan HJ, Ji M. Activation of P2X7R- NLRP3 pathway in Retinal microglia contribute to Retinal Ganglion Cells death in chronic ocular hypertension (COH). Exp Eye Res 2019, 188: 107771.

    Article  CAS  PubMed  Google Scholar 

  34. Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: A trophic role for P2X7R pore. J Neurosci 2009, 29: 3781–3791.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hu X, Zhao GL, Xu MX, Zhou H, Li F, Miao YY, et al. Interplay between Müller cells and microglia aggravates retinal inflammatory response in experimental glaucoma. J Neuroinflammation 2021, 18: 303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Calvo M, Zhu N, Grist J, Ma ZZ, Loeb JA, Bennett DL. Following nerve injury neuregulin-1 drives microglial proliferation and neuropathic pain via the MEK/ERK pathway. Glia 2011, 59: 554–568.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wang W, Ji P, Dow KE. Corticotropin-releasing hormone induces proliferation and TNF-alpha release in cultured rat microglia via MAP kinase signalling pathways. J Neurochem 2003, 84: 189–195.

    Article  CAS  PubMed  Google Scholar 

  38. Uckermann O, Wolf A, Kutzera F, Kalisch F, Beck-Sickinger AG, Wiedemann P, et al. Glutamate release by neurons evokes a purinergic inhibitory mechanism of osmotic glial cell swelling in the rat retina: Activation by neuropeptide Y. J Neurosci Res 2006, 83: 538–550.

    Article  CAS  PubMed  Google Scholar 

  39. Voigt J, Grosche A, Vogler S, Pannicke T, Hollborn M, Kohen L, et al. Nonvesicular release of ATP from rat retinal glial (Müller) cells is differentially mediated in response to osmotic stress and glutamate. Neurochem Res 2015, 40: 651–660.

    Article  CAS  PubMed  Google Scholar 

  40. Byrnes KR, Stoica B, Loane DJ, Riccio A, Davis MI, Faden AI. Metabotropic glutamate receptor 5 activation inhibits microglial associated inflammation and neurotoxicity. Glia 2009, 57: 550–560.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 2009, 284: 15629–15639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baudouin C, Kolko M, Melik-Parsadaniantz S, Messmer EM. Inflammation in Glaucoma: From the back to the front of the eye, and beyond. Prog Retin Eye Res 2021, 83: 100916.

    Article  PubMed  Google Scholar 

  43. Yuan L, Neufeld AH. Tumor necrosis factor-alpha: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000, 32: 42–50.

    Article  CAS  PubMed  Google Scholar 

  44. Madeira MH, Boia R, Santos PF, Ambrósio AF, Santiago AR. Contribution of microglia-mediated neuroinflammation to retinal degenerative diseases. Mediators Inflamm 2015, 2015: 673090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Lozano DC, Choe TE, Cepurna WO, Morrison JC, Johnson EC. Early optic nerve head glial proliferation and jak-stat pathway activation in chronic experimental glaucoma. Invest Ophthalmol Vis Sci 2019, 60: 921–932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Huang YB, Xu Z, Xiong SS, Qin GR, Sun FF, Yang J, et al. Dual extra-retinal origins of microglia in the model of retinal microglia repopulation. Cell Discov 2018, 4: 9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Paschalis EI, Lei FY, Zhou CX, Kapoulea V, Thanos A, Dana R, et al. The role of microglia and peripheral monocytes in retinal damage after corneal chemical injury. Am J Pathol 2018, 188: 1580–1596.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsao HK, Chiu PH, Sun SH. PKC-dependent ERK phosphorylation is essential for P2X7 receptor-mediated neuronal differentiation of neural progenitor cells. Cell Death Dis 2013, 4: e751.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stefano L, Rössler OG, Griesemer D, Hoth M, Thiel G. P2X7 receptor stimulation upregulates Egr-1 biosynthesis involving a cytosolic Ca2+ rise, transactivation of the EGF receptor and phosphorylation of ERK and Elk-1. J Cell Physiol 2007, 213: 36–44.

    Article  CAS  PubMed  Google Scholar 

  50. Lauffenburger DA, Horwitz AF. Cell migration: A physically integrated molecular process. Cell 1996, 84: 359–369.

    Article  CAS  PubMed  Google Scholar 

  51. Asatryan L, Ostrovskaya O, Lieu D, Davies DL. Ethanol differentially modulates P2X4 and P2X7 receptor activity and function in BV2 microglial cells. Neuropharmacology 2018, 128: 11–21.

    Article  CAS  PubMed  Google Scholar 

  52. Burnstock G. Introduction to the special issue on purinergic receptors. Adv Exp Med Biol 2017, 1051: 1–6.

    Article  PubMed  Google Scholar 

  53. Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S. Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 2007, 55: 604–616.

    Article  PubMed  Google Scholar 

  54. Danesh-Meyer HV, Zhang J, Acosta ML, Rupenthal ID, Green CR. Connexin43 in retinal injury and disease. Prog Retin Eye Res 2016, 51: 41–68.

    Article  CAS  PubMed  Google Scholar 

  55. Kerr NM, Johnson CS, Zhang J, Eady EK, Green CR, Danesh-Meyer HV. High pressure-induced retinal ischaemia reperfusion causes upregulation of gap junction protein connexin43 prior to retinal ganglion cell loss. Exp Neurol 2012, 234: 144–152.

    Article  CAS  PubMed  Google Scholar 

  56. Danesh-Meyer HV, Kerr NM, Zhang J, Eady EK, O’Carroll SJ, Nicholson LFB, et al. Connexin43 mimetic peptide reduces vascular leak and retinal ganglion cell death following retinal ischaemia. Brain 2012, 135: 506–520.

    Article  PubMed  Google Scholar 

  57. Huang X, Wang N, Xiao X, Li S, Zhang Q. A novel truncation mutation in GJA1 associated with open angle glaucoma and microcornea in a large Chinese family. Eye (Lond) 2015, 29: 972–977.

    Article  CAS  Google Scholar 

  58. Križaj D, Ryskamp DA, Tian N, Tezel G, Mitchell CH, Slepak VZ, et al. From mechanosensitivity to inflammatory responses: New players in the pathology of glaucoma. Curr Eye Res 2014, 39: 105–119.

    Article  PubMed  CAS  Google Scholar 

  59. Ryskamp DA, Jo AO, Frye AM, Vazquez-Chona F, MacAulay N, Thoreson WB, et al. Swelling and eicosanoid metabolites differentially gate TRPV4 channels in retinal neurons and glia. J Neurosci 2014, 34: 15689–15700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Jo AO, Ryskamp DA, Phuong TTT, Verkman AS, Yarishkin O, MacAulay N, et al. TRPV4 and AQP4 channels synergistically regulate cell volume and calcium homeostasis in retinal Müller glia. J Neurosci 2015, 35: 13525–13537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lakk M, Yarishkin O, Baumann JM, Iuso A, Križaj D. Cholesterol regulates polymodal sensory transduction in Müller glia. Glia 2017, 65: 2038–2050.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Jing F, Zhang YX, Long T, He W, Qin GC, Zhang DK, et al. P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine. J Neuroinflammation 2019, 16: 217.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Eyo UB, Mo MS, Yi MH, Murugan M, Liu JT, Yarlagadda R, et al. P2Y12R-dependent translocation mechanisms gate the changing microglial landscape. Cell Rep 2018, 23: 959–966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Li L, Liu JJ, Xu AM, Heiduschka P, Eter N, Chen CZ. Expression of purinergic receptors on microglia in the animal model of choroidal neovascularisation. Sci Rep 2021, 11: 12389.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Mitchell CH, Lu WN, Hu HL, Zhang XL, Reigada D, Zhang M. The P2X(7) receptor in retinal ganglion cells: A neuronal model of pressure-induced damage and protection by a shifting purinergic balance. Purinergic Signal 2009, 5: 241–249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xia JS, Lim JC, Lu WN, Beckel JM, Macarak EJ, Laties AM, et al. Neurons respond directly to mechanical deformation with pannexin-mediated ATP release and autostimulation of P2X7receptors. J Physiol 2012, 590: 2285–2304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Xue Y, Xie YT, Xue B, Hu N, Zhang GW, Guan HJ, et al. Activated Müller cells involved in ATP-induced upregulation of P2X7 receptor expression and retinal ganglion cell death. Biomed Res Int 2016, 2016: 9020715.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campagno KE, Lu WN, Jassim AH, Albalawi F, Cenaj A, Tso HY, et al. Rapid morphologic changes to microglial cells and upregulation of mixed microglial activation state markers induced by P2X7 receptor stimulation and increased intraocular pressure. J Neuroinflammation 2021, 18: 217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dong LD, Hu YH, Zhou L, Cheng XL. P2X7 receptor antagonist protects retinal ganglion cells by inhibiting microglial activation in a rat chronic ocular hypertension model. Mol Med Rep 2018, 17: 2289–2296.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thanks Dr. Xiong-Li Yang for helpful discussion and critical comments on the manuscript. This work was supported by grants from the National Natural Science Foundation of China (81790642 and 31872765), the Shanghai Municipal Science and Technology Major Project (2018SHZDZX01), ZJ Lab, and the Shanghai Center for Brain Science and Brain-Inspired Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongfeng Wang.

Ethics declarations

Conflict of interest

The authors declare no potential conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 594 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, MX., Zhao, GL., Hu, X. et al. P2X7/P2X4 Receptors Mediate Proliferation and Migration of Retinal Microglia in Experimental Glaucoma in Mice. Neurosci. Bull. 38, 901–915 (2022). https://doi.org/10.1007/s12264-022-00833-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-022-00833-w

Keywords

Navigation