Skip to main content

Advertisement

Log in

Hypothalamic-Pituitary-End-Organ Axes: Hormone Function in Female Patients with Major Depressive Disorder

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Classic hypothalamic-pituitary-end-organ feedback loops – the hypothalamic-pituitary-adrenal axis (HPAA), hypothalamic-pituitary-thyroidal axis (HPTA), and hypothalamic-pituitary-gonadal axis (HPGA) – are associated with the neuroendocrine and immune systems in major depressive disorder (MDD). Female patients with MDD present with evident neuroendocrine and immunological changes. Glucocorticoid, thyroid hormone, and reproductive steroid levels fluctuate with menstrual cycles, which might lead to glucocorticoid receptor resistance, impairment of triiodothyronine conversion, and sex hormone secretion disorders. In this review, we summarize the independent and interactive functions of these three axes in female MDD patients. The similar molecular structure of steroids implies an interrelationship between the hypothalamic-pituitary-end-organ axes and the competitive inhibitory effects at the receptor level, especially when considering the HPAA and HPGA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lee EH, Han PL. Reciprocal interactions across and within multiple levels of monoamine and cortico-limbic systems in stress-induced depression: A systematic review. Neurosci Biobehav Rev 2019, 101: 13–31.

    Article  CAS  PubMed  Google Scholar 

  2. Liang X, Zhu Y, Fang Y. COVID-19 and post-traumatic stress disorder: A vicious circle involving immunosuppression. CNS Neurosci Ther 2020, 26: 876–878.

    Article  CAS  PubMed  Google Scholar 

  3. Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA 2007, 298: 1685–1687.

    Article  CAS  PubMed  Google Scholar 

  4. Miller AH, Maletic V, Raison CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 2009, 65: 732–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zunszain PA, Hepgul N, Pariante CM. Inflammation and depression. Curr Top Behav Neurosci 2013, 14: 135–151.

    Article  CAS  PubMed  Google Scholar 

  6. Wang F, Jin J, Wang J, He R, Li K, Hu X. Association between olfactory function and inhibition of emotional competing distractors in major depressive disorder. Sci Rep 2020, 10: 6322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 2008, 9: 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pace TW, Miller AH. Cytokines and glucocorticoid receptor signaling. Relevance to major depression. Ann N Y Acad Sci 2009, 1179: 86–105.

  9. Jeon SW, Kim YK. The role of neuroinflammation and neurovascular dysfunction in major depressive disorder. J Inflamm Res 2018, 11: 179–192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Horowitz MA, Zunszain PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci 2015, 1351: 68–79.

    Article  CAS  PubMed  Google Scholar 

  11. Bale TL. Neuroendocrine and immune influences on the CNS: it’s a matter of sex. Neuron 2009, 64: 13–16.

    Article  CAS  PubMed  Google Scholar 

  12. Zhu Y, Ji H, Tao L, Cai Q, Wang F, Ji W, et al. Functional status of hypothalamic–pituitary–thyroid and hypothalamic–pituitary–adrenal axes in hospitalized schizophrenics in Shanghai. Front Psychiatry 2020, 11: 65.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Han Y, Ji H, Liu L, Zhu Y, Jiang X. The relationship of functional status of cortisol, testosterone, and parameters of metabolic syndrome in male schizophrenics. Biomed Res Int 2020, 2020: 9124520.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Malhi GS, Mann JJ. Depression. Lancet 2018, 392: 2299–2312.

    Article  PubMed  Google Scholar 

  15. Chen X, Zheng X, Ding Z, Su Y, Wang S, Cui B, et al. Relationship of gender and age on thyroid hormone parameters in a large Chinese population. Arch Endocrinol Metab 2020, 64: 52–58.

    PubMed  Google Scholar 

  16. Honour JW. Biochemistry of the menopause. Ann Clin Biochem 2018, 55: 18–33.

    Article  CAS  PubMed  Google Scholar 

  17. Kudielka BM, Buske-Kirschbaum A, Hellhammer DH, Kirschbaum C. HPA axis responses to laboratory psychosocial stress in healthy elderly adults, younger adults, and children: impact of age and gender. Psychoneuroendocrinology 2004, 29: 83–98.

    Article  CAS  PubMed  Google Scholar 

  18. Pariante CM, Lightman SL. The HPA axis in major depression: classical theories and new developments. Trends Neurosci 2008, 31: 464–468.

    Article  CAS  PubMed  Google Scholar 

  19. Pariante CM. Risk factors for development of depression and psychosis. Glucocorticoid receptors and pituitary implications for treatment with antidepressant and glucocorticoids. Ann N Y Acad Sci 2009, 1179: 144–152.

  20. Burke HM, Davis MC, Otte C, Mohr DC. Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 2005, 30: 846–856.

    Article  CAS  PubMed  Google Scholar 

  21. Wang SS, Mu RH, Li CF, Dong SQ, Geng D, Liu Q, et al. microRNA-124 targets glucocorticoid receptor and is involved in depression-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2017, 79: 417–425.

    Article  CAS  PubMed  Google Scholar 

  22. Pariante CM, Miller AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry 2001, 49: 391–404.

    Article  CAS  PubMed  Google Scholar 

  23. Bekhbat M, Rowson SA, Neigh GN. Checks and balances: The glucocorticoid receptor and NFkB in good times and bad. Front Neuroendocrinol 2017, 46: 15–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee DY, Kim E, Choi MH. Technical and clinical aspects of cortisol as a biochemical marker of chronic stress. Bmb Reports 2015, 48: 209–216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Makhija K, Karunakaran S. The role of inflammatory cytokines on the aetiopathogenesis of depression. Aust N Z J Psychiatry 2013, 47: 828–839.

    Article  PubMed  Google Scholar 

  26. Niu Z, Yang L, Wu X, Zhu Y, Chen J, Fang Y. The relationship between neuroimmunity and bipolar disorder: Mechanism and translational application. Neurosci Bull 2019, 35: 595–607.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Silverman MN, Sternberg EM. Glucocorticoid regulation of inflammation and its functional correlates: from HPA axis to glucocorticoid receptor dysfunction. Ann N Y Acad Sci 2012, 1261: 55–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shelton MM, Schminkey DL, Groer MW. Relationships among prenatal depression, plasma cortisol, and inflammatory cytokines. Biol Res Nurs 2015, 17: 295–302.

    Article  CAS  PubMed  Google Scholar 

  29. Frank MG, Watkins LR, Maier SF. Stress-induced glucocorticoids as a neuroendocrine alarm signal of danger. Brain Behav Immun 2013, 33: 1–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tynan RJ, Naicker S, Hinwood M, Nalivaiko E, Buller KM, Pow DV, et al. Chronic stress alters the density and morphology of microglia in a subset of stress-responsive brain regions. Brain Behav Immun 2010, 24: 1058–1068.

    Article  CAS  PubMed  Google Scholar 

  31. Blandino P Jr, Barnum CJ, Deak T. The involvement of norepinephrine and microglia in hypothalamic and splenic IL-1beta responses to stress. J Neuroimmunol 2006, 173: 87–95.

    Article  CAS  PubMed  Google Scholar 

  32. Ulrich-Lai YM, Herman JP. Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 2009, 10: 397–409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walker FR, Nilsson M, Jones K. Acute and chronic stress-induced disturbances of microglial plasticity, phenotype and function. Curr Drug Targets 2013, 14: 1262–1276.

    Article  CAS  PubMed  Google Scholar 

  34. Alt SR, Turner JD, Klok MD, Meijer OC, Lakke EA, Derijk RH, et al. Differential expression of glucocorticoid receptor transcripts in major depressive disorder is not epigenetically programmed. Psychoneuroendocrinology 2010, 35: 544–556.

    Article  CAS  PubMed  Google Scholar 

  35. ter Heegde F, De Rijk RH, Vinkers CH. The brain mineralocorticoid receptor and stress resilience. Psychoneuroendocrinology 2015, 52: 92–110.

    Article  PubMed  CAS  Google Scholar 

  36. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM Jr, et al. HPA axis in major depression: cortisol, clinical symptomatology and genetic variation predict cognition. Mol Psychiatry 2017, 22: 527–536.

    Article  CAS  PubMed  Google Scholar 

  37. Raison CL, Miller AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry 2003, 160: 1554–1565.

    Article  PubMed  Google Scholar 

  38. Anacker C, Zunszain PA, Carvalho LA, Pariante CM. The glucocorticoid receptor: pivot of depression and of antidepressant treatment?. Psychoneuroendocrinology 2011, 36: 415–425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pochigaeva K, Druzhkova T, Yakovlev A, Onufriev M, Grishkina M, Chepelev A, et al. Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activity in female patients with major depressive disorder. Metab Brain Dis 2017, 32: 577–583.

    Article  CAS  PubMed  Google Scholar 

  40. Young EA, Veldhuis JD. Disordered adrenocorticotropin secretion in women with major depression. J Clin Endocrinol Metab 2006, 91: 1924–1928.

    Article  CAS  PubMed  Google Scholar 

  41. Rampp C, Eichelkraut A, Best J, Czamara D, Rex-Haffner M, Uhr M, et al. Sex-related differential response to dexamethasone in endocrine and immune measures in depressed in-patients and healthy controls. J Psychiatr Res 2018, 98: 107–115.

    Article  PubMed  Google Scholar 

  42. Roos LE, Beauchamp KG, Giuliano R, Zalewski M, Kim HK, Fisher PA. Children’s biological responsivity to acute stress predicts concurrent cognitive performance. Stress 2018, 21: 347–354.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Wei J, Sun G, Zhao L, Yang X, Liu X, Lin D, et al. Analysis of hair cortisol level in first-episodic and recurrent female patients with depression compared to healthy controls. J Affect Disord 2015, 175: 299–302.

    Article  CAS  PubMed  Google Scholar 

  44. Kaess M, Whittle S, O’Brien-Simpson L, Allen NB, Simmons JG. Childhood maltreatment, pituitary volume and adolescent hypothalamic-pituitary-adrenal axis - Evidence for a maltreatment-related attenuation. Psychoneuroendocrinology 2018, 98: 39–45.

    Article  CAS  PubMed  Google Scholar 

  45. Zhu Y, Wu Z, Sie O, Cai Y, Huang J, Liu H, et al. Causes of drug discontinuation in patients with major depressive disorder in China. Prog Neuropsychopharmacol Biol Psychiatry 2020, 96: 109755.

    Article  CAS  PubMed  Google Scholar 

  46. Fischer S, Ehlert U. Hypothalamic-pituitary-thyroid (HPT) axis functioning in anxiety disorders. A systematic review. Depress Anxiety 2018, 35: 98–110.

    Article  CAS  PubMed  Google Scholar 

  47. Cleare A, Pariante CM, Young AH, Anderson IM, Christmas D, Cowen PJ, et al. Evidence-based guidelines for treating depressive disorders with antidepressants: A revision of the 2008 British Association for Psychopharmacology guidelines. J Psychopharmacol 2015, 29: 459–525.

    Article  CAS  PubMed  Google Scholar 

  48. Iosifescu DV, Bolo NR, Nierenberg AA, Jensen JE, Fava M, Renshaw PF. Brain bioenergetics and response to triiodothyronine augmentation in major depressive disorder. Biol Psychiatry 2008, 63: 1127–1134.

    Article  CAS  PubMed  Google Scholar 

  49. Tundo A, de Filippis R, Proietti L. Pharmacologic approaches to treatment resistant depression: Evidences and personal experience. World J Psychiatry 2015, 5: 330–341.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Dold M, Bartova L, Mendlewicz J, Souery D, Serretti A, Porcelli S, et al. Clinical correlates of augmentation/combination treatment strategies in major depressive disorder. Acta Psychiatr Scand 2018, 137: 401–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Martin SS, Daya N, Lutsey PL, Matsushita K, Fretz A, McEvoy JW, et al. Thyroid function, cardiovascular risk factors, and incident atherosclerotic cardiovascular disease: The atherosclerosis risk in communities (ARIC) study. J Clin Endocrinol Metab 2017, 102: 3306–3315.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hage MP, Azar ST. The link between thyroid function and depression. J Thyroid Res 2012, 2012: 590648.

    Article  PubMed  CAS  Google Scholar 

  53. Giynas Ayhan M, Uguz F, Askin R, Gonen MS. The prevalence of depression and anxiety disorders in patients with euthyroid Hashimoto’s thyroiditis: a comparative study. Gen Hosp Psychiatry 2014, 36: 95–98.

    Article  PubMed  Google Scholar 

  54. Saidi S, Iliani Jaafar SN, Daud A, Musa R, Nik Ahmad NNF. Relationship between levels of thyroid stimulating hormone, age, and gender, with symptoms of depression among patients with thyroid disorders as measured by the Depression Anxiety Stress Scale 21 (DASS-21). Enferm Clin 2018, 28(Suppl 1): 180–183.

    Article  Google Scholar 

  55. Gietka-Czernel M. The thyroid gland in postmenopausal women: physiology and diseases. Prz Menopauzalny 2017, 16: 33–37.

    PubMed  PubMed Central  Google Scholar 

  56. Gaberscek S, Zaletel K. Thyroid physiology and autoimmunity in pregnancy and after delivery. Expert Rev Clin Immunol 2011, 7: 697–706; quiz 707.

  57. Pedersen C, Leserman J, Garcia N, Stansbury M, Meltzer-Brody S, Johnson J. Late pregnancy thyroid-binding globulin predicts perinatal depression. Psychoneuroendocrinology 2016, 65: 84–93.

    Article  CAS  PubMed  Google Scholar 

  58. Kurioka H, Takahashi K, Miyazaki K. Maternal thyroid function during pregnancy and puerperal period. Endocr J 2005, 52: 587–591.

    Article  PubMed  Google Scholar 

  59. Jonklaas J, Kahric-Janicic N, Soldin OP, Soldin SJ. Correlations of free thyroid hormones measured by tandem mass spectrometry and immunoassay with thyroid-stimulating hormone across 4 patient populations. Clin Chem 2009, 55: 1380–1388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Pedersen CA, Johnson JL, Silva S, Bunevicius R, Meltzer-Brody S, Hamer RM, et al. Antenatal thyroid correlates of postpartum depression. Psychoneuroendocrinology 2007, 32: 235–245.

    Article  CAS  PubMed  Google Scholar 

  61. Rubinow DR, Schmidt PJ. Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019, 44: 111–128.

    Article  PubMed  Google Scholar 

  62. Barut MU, Coksuer H, Sak S, Bozkurt M, Agacayak E, Hamurcu U, et al. Evaluation of sexual function in women with hypogonadotropic hypogonadism using the female sexual function index (FSFI) and the beck depression inventory (BDI). Med Sci Monit 2018, 24: 5610–5618.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sakinci M, Ercan CM, Olgan S, Coksuer H, Karasahin KE, Kuru O. Comparative analysis of copper intrauterine device impact on female sexual dysfunction subtypes. Taiwan J Obstet Gynecol 2016, 55: 460–461.

    Article  PubMed  Google Scholar 

  64. Basson R, Rees P, Wang R, Montejo AL, Incrocci L. Sexual function in chronic illness. J Sex Med 2010, 7: 374–388.

    Article  PubMed  Google Scholar 

  65. Berman JR, Bassuk J. Physiology and pathophysiology of female sexual function and dysfunction. World J Urol 2002, 20: 111–118.

    Article  PubMed  Google Scholar 

  66. Atis G, Dalkilinc A, Altuntas Y, Atis A, Caskurlu T, Ergenekon E. Sexual dysfunction in women with clinical hypothyroidism and subclinical hypothyroidism. J Sex Med 2010, 7: 2583–2590.

    Article  PubMed  Google Scholar 

  67. Bhasin S, Enzlin P, Coviello A, Basson R. Sexual dysfunction in men and women with endocrine disorders. Lancet 2007, 369: 597–611.

    Article  CAS  PubMed  Google Scholar 

  68. Goldstein JM, Hale T, Foster SL, Tobet SA, Handa RJ. Sex differences in major depression and comorbidity of cardiometabolic disorders: impact of prenatal stress and immune exposures. Neuropsychopharmacology 2019, 44: 59–70.

    Article  PubMed  Google Scholar 

  69. Studd J. Personal view: Hormones and depression in women. Climacteric 2015, 18: 3–5.

    Article  CAS  PubMed  Google Scholar 

  70. Santoro N. Perimenopause: From research to practice. J Womens Health (Larchmt) 2016, 25: 332–339.

    Article  Google Scholar 

  71. Naheed B, Kuiper JH, Uthman OA, O'Mahony F, O'Brien PM. Non-contraceptive oestrogen-containing preparations for controlling symptoms of premenstrual syndrome. Cochrane Database Syst Rev 2017, 3: CD010503.

  72. Biggs WS, Demuth RH. Premenstrual syndrome and premenstrual dysphoric disorder. Am Fam Physician 2011, 84: 918–924.

    PubMed  Google Scholar 

  73. Carrier J, Semba K, Deurveilher S, Drogos L, Cyr-Cronier J, Lord C, et al. Sex differences in age-related changes in the sleep-wake cycle. Front Neuroendocrinol 2017, 47: 66–85.

    Article  PubMed  Google Scholar 

  74. Schiller CE, Meltzer-Brody S, Rubinow DR. The role of reproductive hormones in postpartum depression. CNS Spectr 2015, 20: 48–59.

    Article  PubMed  Google Scholar 

  75. Gordon JL, Girdler SS, Meltzer-Brody SE, Stika CS, Thurston RC, Clark CT, et al. Ovarian hormone fluctuation, neurosteroids, and HPA axis dysregulation in perimenopausal depression: a novel heuristic model. Am J Psychiatry 2015, 172: 227–236.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Studd J, Nappi RE. Reproductive depression. Gynecol Endocrinol 2012, 28(Suppl 1): 42–45.

    Article  CAS  PubMed  Google Scholar 

  77. Studd JW. A guide to the treatment of depression in women by estrogens. Climacteric 2011, 14: 637–642.

    Article  CAS  PubMed  Google Scholar 

  78. Whedon JM, KizhakkeVeettil A, Rugo NA, Kieffer KA. Bioidentical estrogen for menopausal depressive symptoms: A systematic review and meta-analysis. J Womens Health (Larchmt) 2017, 26: 18–28.

    Article  Google Scholar 

  79. Wang F, Wu X, Gao J, Li Y, Zhu Y, Fang Y. The relationship of olfactory function and clinical traits in major depressive disorder. Behav Brain Res 2020, 386: 112594.

    Article  PubMed  Google Scholar 

  80. Rodgers S, Vandeleur CL, Ajdacic-Gross V, Aleksandrowicz AA, Strippoli MF, Castelao E, et al. Tracing the associations between sex, the atypical and the combined atypical-melancholic depression subtypes: A path analysis. J Affect Disord 2016, 190: 807–818.

    Article  PubMed  Google Scholar 

  81. Herzog DP, Wegener G, Lieb K, Muller MB, Treccani G. Decoding the mechanism of action of rapid-acting antidepressant treatment strategies: Does gender matter?. Int J Mol Sci 2019, 20: 949.

    Article  CAS  PubMed Central  Google Scholar 

  82. Skovlund CW, Morch LS, Kessing LV, Lidegaard O. Association of hormonal contraception with depression. JAMA Psychiatry 2016, 73: 1154–1162.

    Article  PubMed  Google Scholar 

  83. Sharma V, Al-Farayedhi M, Doobay M, Baczynski C. Should all women with postpartum depression be screened for bipolar disorder?. Med Hypotheses 2018, 118: 26–28.

    Article  PubMed  Google Scholar 

  84. Studd J. Spotlight on severe premenstrual syndrome and bipolar disorder: a frequent tragic confusion. Climacteric 2011, 14: 602.

    PubMed  Google Scholar 

  85. Sharma V, Burt VK, Ritchie HL. Assessment and treatment of bipolar II postpartum depression: a review. J Affect Disord 2010, 125: 18–26.

    Article  PubMed  Google Scholar 

  86. Barth C, Villringer A, Sacher J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front Neurosci 2015, 9: 37.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Frieder A, Fersh M, Hainline R, Deligiannidis KM. Pharmacotherapy of postpartum depression: Current approaches and novel drug development. CNS Drugs 2019, 33: 265–282.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Patte-Mensah C, Meyer L, Taleb O, Mensah-Nyagan AG. Potential role of allopregnanolone for a safe and effective therapy of neuropathic pain. Prog Neurobiol 2014, 113: 70–78.

    Article  CAS  PubMed  Google Scholar 

  89. Andreen L, Nyberg S, Turkmen S, van Wingen G, Fernandez G, Backstrom T. Sex steroid induced negative mood may be explained by the paradoxical effect mediated by GABAA modulators. Psychoneuroendocrinology 2009, 34: 1121–1132.

    Article  CAS  PubMed  Google Scholar 

  90. Baka J, Csakvari E, Huzian O, Dobos N, Siklos L, Leranth C, et al. Stress induces equivalent remodeling of hippocampal spine synapses in a simulated postpartum environment and in a female rat model of major depression. Neuroscience 2017, 343: 384–397.

    Article  CAS  PubMed  Google Scholar 

  91. Schule C, Eser D, Baghai TC, Nothdurfter C, Kessler JS, Rupprecht R. Neuroactive steroids in affective disorders: target for novel antidepressant or anxiolytic drugs?. Neuroscience 2011, 191: 55–77.

    Article  CAS  PubMed  Google Scholar 

  92. Brown SB, MacLatchy DL, Hara TJ, Eales JG. Effects of cortisol on aspects of 3,5,3’-triiodo-L-thyronine metabolism in rainbow trout (Oncorhynchus mykiss). Gen Comp Endocrinol 1991, 81: 207–216.

    Article  CAS  PubMed  Google Scholar 

  93. Sahoo M, Subho C. Cortisol hypersecretion in unipolar major depression with melancholic and psychotic features: dopaminergic, noradrenergic and thyroid correlates. Psychoneuroendocrinology 2007, 32: 210; author reply 211–212.

  94. Evans J, Sun Y, McGregor A, Connor B. Allopregnanolone regulates neurogenesis and depressive/anxiety-like behaviour in a social isolation rodent model of chronic stress. Neuropharmacology 2012, 63: 1315–1326.

    Article  CAS  PubMed  Google Scholar 

  95. Block T, Petrides G, Kushner H, Kalin N, Belanoff J, Schatzberg A. Mifepristone plasma level and glucocorticoid receptor antagonism associated with response in patients with psychotic depression. J Clin Psychopharmacol 2017, 37: 505–511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Mason BL, Pariante CM. The effects of antidepressants on the hypothalamic-pituitary-adrenal axis. Drug News Perspect 2006, 19: 603–608.

    Article  CAS  PubMed  Google Scholar 

  97. DeBattista C, Belanoff J, Glass S, Khan A, Horne RL, Blasey C, et al. Mifepristone versus placebo in the treatment of psychosis in patients with psychotic major depression. Biol Psychiatry 2006, 60: 1343–1349.

    Article  CAS  PubMed  Google Scholar 

  98. Soria V, Gonzalez-Rodriguez A, Huerta-Ramos E, Usall J, Cobo J, Bioque M, et al. Targeting hypothalamic-pituitary-adrenal axis hormones and sex steroids for improving cognition in major mood disorders and schizophrenia: a systematic review and narrative synthesis. Psychoneuroendocrinology 2018, 93: 8–19.

    Article  CAS  PubMed  Google Scholar 

  99. Bjorn I, Sundstrom-Poromaa I, Bixo M, Nyberg S, Backstrom G, Backstrom T. Increase of estrogen dose deteriorates mood during progestin phase in sequential hormonal therapy. J Clin Endocrinol Metab 2003, 88: 2026–2030.

    Article  PubMed  CAS  Google Scholar 

  100. Khorsand I, Kashef R, Ghazanfarpour M, Mansouri E, Dashti S, Khadivzadeh T. The beneficial and adverse effects of raloxifene in menopausal women: A mini review. J Menopausal Med 2018, 24: 183–187.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Hoyer J, Burmann I, Kieseler ML, Vollrath F, Hellrung L, Arelin K, et al. Menstrual cycle phase modulates emotional conflict processing in women with and without premenstrual syndrome (PMS) - a pilot study. Plos One 2013, 8: e59780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Wolfram M, Bellingrath S, Kudielka BM. The cortisol awakening response (CAR) across the female menstrual cycle. Psychoneuroendocrinology 2011, 36: 905–912.

    Article  CAS  PubMed  Google Scholar 

  103. Kiesner J, Granger DA. A lack of consistent evidence for cortisol dysregulation in premenstrual syndrome/premenstrual dysphoric disorder. Psychoneuroendocrinology 2016, 65: 149–164.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Yueyin Pan for image processing. This review was supported by the National Key Research and Development Program of China (2016YFC1307100, 2016YFC1307105), the National Natural Science Foundation of China (81771465, 81930033), the National Key Technologies R&D Program of China (2012BAI01B04), Shanghai Key Project of Science and Technology (2018SHZDZX05), the Sanming Project of Medicine in Shenzheng (SZSM201612006), Shanghai Key Medicine Specialties Program (ZK2019A06), Shanghai Clinical Research Center for Mental Health (SCRC-MH, 19MC1911100), the Special Project for Clinical Research in Health Industry of Shanghai Municipal Health Commission (20204Y0025), the Innovative Research Team of High-level Local Universities in Shanghai, and the National Health System “Good Doctor” Construction Project of Yangpu District of Shanghai Municipality (2020–2023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fang Wang or Yiru Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Y., Wu, X., Zhou, R. et al. Hypothalamic-Pituitary-End-Organ Axes: Hormone Function in Female Patients with Major Depressive Disorder. Neurosci. Bull. 37, 1176–1187 (2021). https://doi.org/10.1007/s12264-021-00689-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-021-00689-6

Keywords

Navigation