Skip to main content

Advertisement

Log in

N-acetylaspartylglutamate Inhibits Heroin Self-Administration and Heroin-Seeking Behaviors Induced by Cue or Priming in Rats

  • Original Article
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Activation of presynaptic group II metabotropic glutamate receptors (mGluR2/3) inhibits drug reward and drug-seeking behavior, but the role of N-acetylaspartylglutamate (NAAG), an agonist of endogenous mGluR2/3, in heroin reward and heroin-seeking behavior remained unclear. Here, we aimed to explore the effects of exogenous NAAG on heroin self-administration and heroin-seeking behavior. First, rats were trained to self-administer heroin under a fixed ratio 1 (FR1) schedule for 10 days, then received NAAG (50 or 100 μg/10 μL in each nostril) in the absence or presence of LY341495 (1 mg/kg, i.p.), an antagonist of mGluR2/3, on day 11 and the effects of NAAG on heroin self-administration under FR1 were recorded for 3 consecutive days. Motivation was assessed in heroin self-administration under a progressive ratio schedule on day 11 in another 5 groups with the same doses of NAAG. Additional rats were withdrawn for 14 days after 14 days of heroin self-administration, then received the same pharmacological pretreatment and were tested for heroin-seeking behaviors induced by heroin priming or cues. The results showed that intranasal administration of NAAG significantly decreased intravenous heroin self-administration on day 12, but not on day 11. Pretreatment with LY341495 prior to testing on day 12 prevented the inhibitory effect of NAAG on heroin reinforcement. The break-point for reward motivation was significantly reduced by NAAG. Moreover, NAAG also significantly inhibited the heroin-seeking behaviors induced by heroin priming or cues and these were restored by pretreatment with LY341495. These results demonstrated that NAAG, via activation of presynaptic mGluR2/3, attenuated the heroin reinforcement, heroin motivational value, and heroin-seeking behavior, suggesting that it may be used as an adjunct treatment for heroin addiction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kalivas PW. The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 2009, 10: 561–572.

    Article  CAS  PubMed  Google Scholar 

  2. D’Souza MS. Glutamatergic transmission in drug reward: implications for drug addiction. Front Neurosci 2015, 9: 404.

    PubMed  PubMed Central  Google Scholar 

  3. LaLumiere RT, Kalivas PW. Glutamate release in the nucleus accumbens core is necessary for heroin seeking. J Neurosci 2008, 28: 3170–3177.

    Article  CAS  PubMed  Google Scholar 

  4. Lou ZZ, Chen LH, Liu HF, Ruan LM, Zhou WH. Blockade of mGluR5 in the nucleus accumbens shell but not core attenuates heroin seeking behavior in rats. Acta Pharmacol Sin 2014, 35: 1485–1492.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhou W, Kalivas PW. N-acetylcysteine reduces extinction responding and induces enduring reductions in cue- and heroin-induced drug-seeking. Biol Psychiatry 2008, 63: 338–340.

    Article  CAS  PubMed  Google Scholar 

  6. Hu G, Duffy P, Swanson C, Ghasemzadeh MB, Kalivas PW. The regulation of dopamine transmission by metabotropic glutamate receptors. J Pharmacol Exp Ther 1999, 289: 412–416.

    CAS  PubMed  Google Scholar 

  7. Xi ZX, Baker DA, Shen H, Carson DS, Kalivas PW. Group II metabotropic glutamate receptors modulate extracellular glutamate in the nucleus accumbens. J Pharmacol Exp Ther 2002, 300: 162–171.

    Article  CAS  PubMed  Google Scholar 

  8. Imre G. The preclinical properties of a novel group II metabotropic glutamate receptor agonist LY379268. CNS Drug Rev 2007, 13: 444–464.

    CAS  PubMed  Google Scholar 

  9. Cartmell J, Monn JA, Schoepp DD. The metabotropic glutamate 2/3 receptor agonists LY354740 and LY379268 selectively attenuate phencyclidine versus d-amphetamine motor behaviors in rats. J Pharmacol Exp Ther 1999, 291: 161–170.

    CAS  PubMed  Google Scholar 

  10. Dd DD, Marek GJ. Preclinical pharmacology of mGlu2/3 receptor agonists: novel agents for schizophrenia? Curr Drug Targets CNS Neurol Disord 2002, 1: 215–225.

    Article  PubMed  Google Scholar 

  11. Liechti ME, Markou A. Metabotropic glutamate 2/3 receptor activation induced reward deficits but did not aggravate brain reward deficits associated with spontaneous nicotine withdrawal in rats. Biochem Pharmacol 2007, 74: 1299–1307.

    Article  CAS  PubMed  Google Scholar 

  12. Sidhpura N, Weiss F, Martin-Fardon R. Effects of the mGlu2/3 agonist LY379268 and the mGlu5 antagonist MTEP on ethanol seeking and reinforcement are differentially altered in rats with a history of ethanol dependence. Biol Psychiatry 2010, 67: 804–811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cannady R, Grondin JJ, Fisher KR, Hodge CW, Besheer J. Activation of group II metabotropic glutamate receptors inhibits the discriminative stimulus effects of alcohol via selective activity within the amygdala. Neuropsychopharmacology 2011, 36: 2328–2338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bossert JM, Busch RF, Gray SM. The novel mGluR2/3 agonist LY379268 attenuates cue-induced reinstatement of heroin seeking. Neuroreport 2005, 16: 1013–1016.

    Article  CAS  PubMed  Google Scholar 

  15. Bossert JM, Gray SM, Lu L, Shaham Y. Activation of group II metabotropic glutamate receptors in the nucleus accumbens shell attenuates context-induced relapse to heroin seeking. Neuropsychopharmacology 2006, 31: 2197–2209.

    CAS  PubMed  Google Scholar 

  16. Neale JH, Bzdega T, Wroblewska B. N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. J Neurochem 2000, 75: 443–452.

    Article  CAS  PubMed  Google Scholar 

  17. Neale JH. N-acetylaspartylglutamate is an agonist at mGluR(3) in vivo and in vitro. J Neurochem 2011, 119: 891–895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Olszewski RT, Bzdega T, Neale JH. mGluR3 and not mGluR2 receptors mediate the efficacy of NAAG peptidase inhibitor in validated model of schizophrenia. Schizophr Res 2012, 136: 160–161.

    Article  PubMed  Google Scholar 

  19. Fuhrman S, Palkovits M, Cassidy M, Neale JH. The regional distribution of N-acetylaspartylglutamate (NAAG) and peptidase activity against NAAG in the rat nervous system. J Neurochem. 1994, 62: 275–281.

    Article  CAS  PubMed  Google Scholar 

  20. Slusher BS, Vornov JJ, Thomas AG, Hurn PD, Harukuni I, Bhardwaj A, et al. Selective inhibition of NAALADase, which converts NAAG to glutamate, reduces ischemic brain injury. Nat Med 1999, 5: 1396–1402.

    Article  CAS  PubMed  Google Scholar 

  21. Shippenberg TS, Rea W, Slusher BS. Modulation of behavioral sensitization to cocaine by NAALADase inhibition. Synapse 2000, 38: 161–166.

    Article  CAS  PubMed  Google Scholar 

  22. Slusher BS, Thomas A, Paul M, Schad CA, Ashby CR, Jr. Expression and acquisition of the conditioned place preference response to cocaine in rats is blocked by selective inhibitors of the enzyme N-acetylated-alpha-linked-acidic dipeptidase (NAALADASE). Synapse 2001, 41: 22–28.

    Article  CAS  PubMed  Google Scholar 

  23. Witkin JM, Gasior M, Schad C, Zapata A, Shippenberg T, Hartman T, et al. NAALADase (GCP II) inhibition prevents cocaine-kindled seizures. Neuropharmacology 2002, 43: 348–356.

    Article  CAS  PubMed  Google Scholar 

  24. Popik P, Kozela E, Wrobel M, Wozniak KM, Slusher BS. Morphine tolerance and reward but not expression of morphine dependence are inhibited by the selective glutamate carboxypeptidase II (GCP II, NAALADase) inhibitor, 2-PMPA. Neuropsychopharmacology 2003, 28: 457–467.

    Article  CAS  PubMed  Google Scholar 

  25. Xi ZX, Kiyatkin M, Li X, Peng XQ, Wiggins A, Spiller K, et al. N-acetylaspartylglutamate (NAAG) inhibits intravenous cocaine self-administration and cocaine-enhanced brain-stimulation reward in rats. Neuropharmacology 2010, 58: 304–313.

    Article  CAS  PubMed  Google Scholar 

  26. Xi ZX, Li X, Peng XQ, Li J, Chun L, Gardner EL, et al. Inhibition of NAALADase by 2-PMPA attenuates cocaine-induced relapse in rats: a NAAG-mGluR2/3-mediated mechanism. J Neurochem 2010, 112: 564–576.

    Article  CAS  PubMed  Google Scholar 

  27. Lai M, Chen W, Zhu H, Zhou X, Liu H, Zhang F, et al. Low dose risperidone attenuates cue-induced but not heroin-induced reinstatement of heroin seeking in an animal model of relapse. Int J Neuropsychopharmacol 2013, 16: 1569–1575.

    Article  CAS  PubMed  Google Scholar 

  28. Duvauchelle CL, Sapoznik T, Kornetsky C. The synergistic effects of combining cocaine and heroin (“speedball”) using a progressive-ratio schedule of drug reinforcement. Pharmacol Biochem Behav 1998, 61: 297–302.

    Article  CAS  PubMed  Google Scholar 

  29. Lai M, Zhu H, Sun A, Zhuang D, Fu D, Chen W, et al. The phosphodiesterase-4 inhibitor rolipram attenuates heroin-seeking behavior induced by cues or heroin priming in rats. Int J Neuropsychopharmacol 2014, 17: 1397–1407.

    Article  CAS  PubMed  Google Scholar 

  30. O’Brien CP, Gardner EL. Critical assessment of how to study addiction and its treatment: human and non-human animal models. Pharmacol Ther 2005, 108: 18–58.

    Article  PubMed  Google Scholar 

  31. Wise RA. Role of brain dopamine in food reward and reinforcement. Philos Trans R Soc Lond B Biol Sci 2006, 361: 1149–1158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Arnold JM, Roberts DC. A critique of fixed and progressive ratio schedules used to examine the neural substrates of drug reinforcement. Pharmacol Biochem Behav 1997, 57: 441–447.

    Article  CAS  PubMed  Google Scholar 

  33. Zhou W, Zhang F, Liu H, Tang S, Lai M, Zhu H, et al. Effects of training and withdrawal periods on heroin seeking induced by conditioned cue in an animal of model of relapse. Psychopharmacology (Berl) 2009, 203: 677–684.

    Article  CAS  Google Scholar 

  34. O’Neill MF, Heron-Maxwell C, Conway MW, Monn JA, Ornstein P. Group II metabotropic glutamate receptor antagonists LY341495 and LY366457 increase locomotor activity in mice. Neuropharmacology 2003, 45: 565–574.

    Article  PubMed  Google Scholar 

  35. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A. Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 2010, 30: 8229–8233.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH. Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 2012, 32: 15076–15085.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Neale JH, Olszewski RT, Gehl LM, Wroblewska B, Bzdega T. The neurotransmitter N-acetylaspartylglutamate in models of pain, ALS, diabetic neuropathy, CNS injury and schizophrenia. Trends Pharmacol Sci 2005, 26: 477–484.

    CAS  PubMed  Google Scholar 

  38. Peters J, Kalivas PW. The group II metabotropic glutamate receptor agonist, LY379268, inhibits both cocaine- and food-seeking behavior in rats. Psychopharmacology (Berl) 2006, 186: 143–149.

    Article  CAS  Google Scholar 

  39. Collado I, Pedregal C, Mazon A, Espinosa JF, Blanco-Urgoiti J, Schoepp DD, et al. (2S,1’S,2’S,3’R)-2-(2’-carboxy-3’-methylcyclopropyl) glycine is a potent and selective metabotropic group 2 receptor agonist with anxiolytic properties. J Med Chem 2002, 45: 3619–3629.

    Article  CAS  PubMed  Google Scholar 

  40. Hetzenauer A, Corti C, Herdy S, Corsi M, Ferraguti F, Singewald N. Individual contribution of metabotropic glutamate receptor (mGlu) 2 and 3 to c-Fos expression pattern evoked by mGlu2/3 antagonism. Psychopharmacology (Berl) 2008, 201: 1–13.

    Article  CAS  Google Scholar 

  41. Costantino HR, Illum L, Brandt G, Johnson PH, Quay SC. Intranasal delivery: physicochemical and therapeutic aspects. Int J Pharm 2007, 337: 1–24.

    Article  CAS  PubMed  Google Scholar 

  42. Peng XQ, Li J, Gardner EL, Ashby CR, Jr., Thomas A, Wozniak K, et al. Oral administration of the NAALADase inhibitor GPI-5693 attenuates cocaine-induced reinstatement of drug-seeking behavior in rats. Eur J Pharmacol 2010, 627: 156–161.

    Article  CAS  PubMed  Google Scholar 

  43. Cartmell J, Monn JA, Schoepp DD. Tolerance to the motor impairment, but not to the reversal of PCP-induced motor activities by oral administration of the mGlu2/3 receptor agonist, LY379268. Naunyn Schmiedebergs Arch Pharmacol 2000, 361: 39–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2015CB553504), the National Natural Science Foundation of China (81471350 and 81671321), and the Natural Science Foundation of Ningbo Municipality, Zhejiang Province, China (2015A610193).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhua Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Lai, M., Chen, W. et al. N-acetylaspartylglutamate Inhibits Heroin Self-Administration and Heroin-Seeking Behaviors Induced by Cue or Priming in Rats. Neurosci. Bull. 33, 396–404 (2017). https://doi.org/10.1007/s12264-017-0140-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-017-0140-3

Keywords

Navigation