Skip to main content

Advertisement

Log in

Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Neurogenesis and angiogenesis play important roles in functional recovery after ischemic stroke. When cerebral ischemia occurs, axon regeneration can compensate for the loss of apoptotic neurons in the ischemic area. The formation of new blood vessels ameliorates the local decrease in blood supply, enhancing the supply of oxygen and nutrients to newly-formed neurons. New blood vessels also act as a scaffold for the migration of neuroblasts to the infarct area after ischemic stroke. In light of this, researchers have been actively searching for methods to treat cerebral infarction. Netrins were first identified as a family of proteins that mediate axon guidance and direct axon migration during embryogenesis. Later studies have revealed other functions of this protein family. In this review, we focus on netrin-1, which has been shown to be involved in axon migration and angiogenesis, which are required for recovery after cerebral ischemia. Thus, therapies targeting netrin-1 may be useful for the treatment of ischemic stroke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, et al. Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 2013, 127: e6–e245.

    Article  PubMed  Google Scholar 

  2. Hacke W, Kaste M, Bluhmki E, Brozman M, Davalos A, Guidetti D, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. N Engl J Med 2008, 359: 1317–1329.

    Article  CAS  PubMed  Google Scholar 

  3. Liu Y, Stein E, Oliver T, Li Y, Brunken WJ, Koch M, et al. Novel role for Netrins in regulating epithelial behavior during lung branching morphogenesis. Curr Biol 2004, 14: 897–905.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. De Breuck S, Lardon J, Rooman I, Bouwens L. Netrin-1 expression in fetal and regenerating rat pancreas and its effect on the migration of human pancreatic duct and porcine islet precursor cells. Diabetologia 2003, 46: 926–933.

    Article  PubMed  Google Scholar 

  5. Strizzi L, Mancino M, Bianco C, Raafat A, Gonzales M, Booth BW, et al. Netrin-1 can affect morphogenesis and differentiation of the mouse mammary gland. J Cell Physiol 2008, 216: 824–834.

    Article  CAS  PubMed  Google Scholar 

  6. Salminen M, Meyer BI, Bober E, Gruss P. Netrin 1 is required for semicircular canal formation in the mouse inner ear. Development 2000, 127: 13–22.

    CAS  PubMed  Google Scholar 

  7. Mehlen P, Guenebeaud C. Netrin-1 and its dependence receptors as original targets for cancer therapy. Curr Opin Oncol 2010, 22: 46–54.

    Article  CAS  PubMed  Google Scholar 

  8. Ly NP, Komatsuzaki K, Fraser IP, Tseng AA, Prodhan P, Moore KJ, et al. Netrin-1 inhibits leukocyte migration in vitro and in vivo. Proc Natl Acad Sci U S A 2005, 102: 14729–14734.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Ranganathan PV, Jayakumar C, Mohamed R, Dong Z, Ramesh G. Netrin-1 regulates the inflammatory response of neutrophils and macrophages, and suppresses ischemic acute kidney injury by inhibiting COX-2-mediated PGE2 production. Kidney Int 2013, 83: 1087–1098.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Son TW, Yun SP, Yong MS, Seo BN, Ryu JM, Youn HY, et al. Netrin-1 protects hypoxia-induced mitochondrial apoptosis through HSP27 expression via DCC- and integrin alpha6beta4-dependent Akt, GSK-3beta, and HSF-1 in mesenchymal stem cells. Cell Death Dis 2013, 4: e563.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Reeves WB, Kwon O, Ramesh G. Netrin-1 and kidney injury. II. Netrin-1 is an early biomarker of acute kidney injury. Am J Physiol Renal Physiol 2008, 294: F731–738.

    Article  CAS  PubMed  Google Scholar 

  12. Ramesh G, Berg A, Jayakumar C. Plasma netrin-1 is a diagnostic biomarker of human cancers. Biomarkers 2011, 16: 172–180.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Bayat M, Baluchnejadmojarad T, Roghani M, Goshadrou F, Ronaghi A, Mehdizadeh M. Netrin-1 improves spatial memory and synaptic plasticity impairment following global ischemia in the rat. Brain Res 2012, 1452: 185–194.

    Article  CAS  PubMed  Google Scholar 

  14. Wu TW, Li WW, Li H. Netrin-1 attenuates ischemic strokeinduced apoptosis. Neuroscience 2008, 156: 475–482.

    Article  CAS  PubMed  Google Scholar 

  15. Lu H, Wang Y, Yuan F, Liu J, Zeng L, Yang GY. Overexpression of netrin-1 improves neurological outcomes in mice following transient middle cerebral artery occlusion. Front Med 2011, 5: 86–93.

    Article  PubMed  Google Scholar 

  16. Liao SJ, Gong Q, Chen XR, Ye LX, Ding Q, Zeng JS, et al. Netrin-1 rescues neuron loss by attenuating secondary apoptosis in ipsilateral thalamic nucleus following focal cerebral infarction in hypertensive rats. Neuroscience 2013, 231: 225–232.

    Article  CAS  PubMed  Google Scholar 

  17. Cirulli V, Yebra M. Netrins: beyond the brain. Nat Rev Mol Cell Biol 2007, 8: 296–306.

    Article  CAS  PubMed  Google Scholar 

  18. Bradford D, Cole SJ, Cooper HM. Netrin-1: diversity in development. Int J Biochem Cell Biol 2009, 41: 487–493.

    Article  CAS  PubMed  Google Scholar 

  19. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol 2009, 10: 239.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Lai Wing Sun K, Correia JP, Kennedy TE. Netrins: versatile extracellular cues with diverse functions. Development 2011, 138: 2153–2169.

    Article  PubMed  Google Scholar 

  21. Eichmann A, Makinen T, Alitalo K. Neural guidance molecules regulate vascular remodeling and vessel navigation. Genes Dev 2005, 19: 1013–1021.

    Article  CAS  PubMed  Google Scholar 

  22. Engelkamp D. Cloning of three mouse Unc5 genes and their expression patterns at mid-gestation. Mech Dev 2002, 118: 191–197.

    Article  CAS  PubMed  Google Scholar 

  23. Yang B, Peng G, Gao J. Expression of unc5 family genes in zebrafish brain during embryonic development. Gene Expr Patterns 2013, 13: 311–318.

    Article  CAS  PubMed  Google Scholar 

  24. Dakouane-Giudicelli M, Duboucher C, Fortemps J, Missey-Kolb H, Brule D, Giudicelli Y, et al. Characterization and expression of netrin-1 and its receptors UNC5B and DCC in human placenta. J Histochem Cytochem 2010, 58: 73–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Castets M, Coissieux MM, Delloye-Bourgeois C, Bernard L, Delcros JG, Bernet A, et al. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis. Dev Cell 2009, 16: 614–620.

    Article  CAS  PubMed  Google Scholar 

  26. Navankasattusas S, Whitehead KJ, Suli A, Sorensen LK, Lim AH, Zhao J, et al. The netrin receptor UNC5B promotes angiogenesis in specific vascular beds. Development 2008, 135: 659–667.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Lu X, Le Noble F, Yuan L, Jiang Q, De Lafarge B, Sugiyama D, et al. The netrin receptor UNC5B mediates guidance events controlling morphogenesis of the vascular system. Nature 2004, 432: 179–186.

    Article  CAS  PubMed  Google Scholar 

  28. Larrivee B, Freitas C, Trombe M, Lv X, Delafarge B, Yuan L, et al. Activation of the UNC5B receptor by Netrin-1 inhibits sprouting angiogenesis. Genes Dev 2007, 21: 2433–2447.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Corset V, Nguyen-Ba-Charvet KT, Forcet C, Moyse E, Chedotal A, Mehlen P. Netrin-1-mediated axon outgrowth and cAMP production requires interaction with adenosine A2b receptor. Nature 2000, 407: 747–750.

    Article  CAS  PubMed  Google Scholar 

  30. Stein E, Zou Y, Poo M, Tessier-Lavigne M. Binding of DCC by netrin-1 to mediate axon guidance independent of adenosine A2B receptor activation. Science 2001, 291: 1976–1982.

    Article  CAS  PubMed  Google Scholar 

  31. McKenna WL, Wong-Staal C, Kim GC, Macias H, Hinck L, Bartoe JL. Netrin-1-independent adenosine A2b receptor activation regulates the response of axons to netrin-1 by controlling cell surface levels of UNC5A receptors. J Neurochem 2008, 104: 1081–1090.

    Article  CAS  PubMed  Google Scholar 

  32. Yebra M, Montgomery AM, Diaferia GR, Kaido T, Silletti S, Perez B, et al. Recognition of the neural chemoattractant Netrin-1 by integrins alpha6beta4 and alpha3beta1 regulates epithelial cell adhesion and migration. Dev Cell 2003, 5: 695–707.

    Article  CAS  PubMed  Google Scholar 

  33. Ishii N, Wadsworth WG, Stern BD, Culotti JG, Hedgecock EM. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 1992, 9: 873–881.

    Article  CAS  PubMed  Google Scholar 

  34. Serafini T, Kennedy TE, Galko MJ, Mirzayan C, Jessell TM, Tessier-Lavigne M. The netrins define a family of axon outgrowth-promoting proteins homologous to C. elegans UNC-6. Cell 1994, 78: 409–424.

    Article  CAS  PubMed  Google Scholar 

  35. Moon C, Ahn M, Jeong C, Kim H, Shin T. Immunohistochemical study of netrin-1 in the spinal cord with rat experimental autoimmune encephalomyelitis. Immunol Invest 2011, 40: 160–171.

    Article  CAS  PubMed  Google Scholar 

  36. Livesey FJ, Hunt SP. Netrin and netrin receptor expression in the embryonic mammalian nervous system suggests roles in retinal, striatal, nigral, and cerebellar development. Mol Cell Neurosci 1997, 8: 417–429.

    Article  CAS  PubMed  Google Scholar 

  37. Shatzmiller RA, Goldman JS, Simard-Emond L, Rymar V, Manitt C, Sadikot AF, et al. Graded expression of netrin-1 by specific neuronal subtypes in the adult mammalian striatum. Neuroscience 2008, 157: 621–636.

    Article  CAS  PubMed  Google Scholar 

  38. Dalvin S, Anselmo MA, Prodhan P, Komatsuzaki K, Schnitzer JJ, Kinane TB. Expression of Netrin-1 and its two receptors DCC and UNC5H2 in the developing mouse lung. Gene Expr Patterns 2003, 3: 279–283.

    Article  CAS  PubMed  Google Scholar 

  39. Chen J, Cai QP, Shen PJ, Yan RL, Wang CM, Yang DJ, et al. Netrin-1 protects against L-Arginine-induced acute pancreatitis in mice. PLoS One 2012, 7: e46201.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Srinivasan K, Strickland P, Valdes A, Shin GC, Hinck L. Netrin-1/neogenin interaction stabilizes multipotent progenitor cap cells during mammary gland morphogenesis. Dev Cell 2003, 4: 371–382.

    Article  CAS  PubMed  Google Scholar 

  41. Llambi F, Causeret F, Bloch-Gallego E, Mehlen P. Netrin-1 acts as a survival factor via its receptors UNC5H and DCC. EMBO J 2001, 20: 2715–2722.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Mei F, Christin Chong SY, Chan JR. Myelin-based inhibitors of oligodendrocyte myelination: clues from axonal growth and regeneration. Neurosci Bull 2013, 29: 177–188.

    Article  CAS  PubMed  Google Scholar 

  43. Serafini T, Colamarino SA, Leonardo ED, Wang H, Beddington R, Skarnes WC, et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 1996, 87: 1001–1014.

    Article  CAS  PubMed  Google Scholar 

  44. Larrivee B, Freitas C, Suchting S, Brunet I, Eichmann A. Guidance of vascular development: lessons from the nervous system. Circ Res 2009, 104: 428–441.

    Article  CAS  PubMed  Google Scholar 

  45. Carmeliet P, Tessier-Lavigne M. Comm on mechanisms of nerve and blood vessel wiring. Nature 2005, 436: 193–200.

    Article  CAS  PubMed  Google Scholar 

  46. Dickson BJ. Molecular mechanisms of a xon guidance. Science 2002, 298: 1959–1964.

    Article  CAS  PubMed  Google Scholar 

  47. Klagsbrun M, Eichmann A. A role for ax on guidance receptors and ligands in blood vessel development and tumor angiogenesis. Cytokine Growth Factor Rev 2005, 16: 535–548.

    Article  CAS  PubMed  Google Scholar 

  48. Semenza GL. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. J Cell Biochem 2007, 102: 840–847.

    Article  CAS  PubMed  Google Scholar 

  49. Potente M, Gerhardt H, Carmeliet P. Basi c and therapeutic aspects of angiogenesis. Cell 2011, 146: 873–887.

    Article  CAS  PubMed  Google Scholar 

  50. Chavakis E, Dimmeler S. Regulation of end othelial cell survival and apoptosis during angiogenesis. Arterioscler Thromb Vasc Biol 2002, 22: 887–893.

    Article  CAS  PubMed  Google Scholar 

  51. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 2011, 473: 298–307.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Park KW, Crouse D, Lee M, Karnik SK, Sorensen LK, Murphy KJ, et al. The axonal attractant Netrin-1 is an angiogenic factor. Proc Natl Acad Sci U S A 2004, 101: 16210–16215.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Wilson BD, Ii M, Park KW, Suli A, Sorensen L K, Larrieu-Lahargue F, et al. Netrins promote developmental and therapeutic angiogenesis. Science 2006, 313: 640–644.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Fan Y, Shen F, Chen Y, Hao Q, Liu W, Su H, et al. Overexpression of netrin-1 induces neovascularization in the adult mouse brain. J Cereb Blood Flow Metab 2008, 28: 1543–1551.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Nguyen A, Cai H. Netrin-1 induces angiogenesis via a DCCdependent ERK1/2-eNOS feed-forward mechanism. Proc Natl Acad Sci U S A 2006, 103: 6530–6535.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Yang Y, Zou L, Wang Y, Xu KS, Zhang JX, Zhang J H. Axon guidance cue Netrin-1 has dual function in angiogenesis. Cancer Biol Ther 2007, 6: 743–748.

    Article  CAS  PubMed  Google Scholar 

  57. Krupinski J, Kaluza J, Kumar P, Kumar S, Wang JM. Role of angiogenesis in patients with cerebral ischemic stroke. Stroke 1994, 25: 1794–1798.

    Article  CAS  PubMed  Google Scholar 

  58. Sbarbati A, Pietra C, Baldassarri AM, Guerrini U, Ziviani L, Reggiani A, et al. The microvascular system in ischemic cortical lesions. Acta Neuropathol 1996, 92: 56–63.

    Article  CAS  PubMed  Google Scholar 

  59. Hayashi T, Noshita N, Sugawara T, Chan PH. Temporal profile of angiogenesis and expression of related genes in the brain after ischemia. J Cereb Blood Flow Metab 2003, 23: 166–180.

    Article  CAS  PubMed  Google Scholar 

  60. Beck H, Acker T, Wiessner C, Allegrini PR, Plate KH. Expression of angiopoietin-1, angiopoietin-2, and tie receptors after middle cerebral artery occlusion in the rat. Am J Pathol 2000, 157: 1473–1483.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Tian HL, Chen H, Cui YH, Xu T, Zhou LF. Increased protein and mRNA expression of endostatin in the ischemic brain tissue of rabbits after middle cerebral artery occlusion. Neurosci Bull 2007, 23: 35–40.

    Article  CAS  PubMed  Google Scholar 

  62. Seevinck PR, Deddens LH, Dijkhuizen RM. Magnetic resonance imaging of brain angiogenesis after stroke. Angiogenesis 2010, 13: 101–111.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Yu SW, Friedman B, Cheng Q, Lyden PD. Stroke-evoked angiogenesis results in a transient population of microvessels. J Cereb Blood Flow Metab 2007, 27: 755–763.

    PubMed  Google Scholar 

  64. Wei L, Erinjeri JP, Rovainen CM, Woolsey TA. Collateral growth and angiogenesis around cortical stroke. Stroke 2001, 32: 2179–2184.

    Article  CAS  PubMed  Google Scholar 

  65. Le Magueresse C, Alfonso J, Bark C, Eliava M, Khrulev S, Monyer H. Subventricular zone-derived neuroblasts use vasculature as a scaffold to migrate radially to the cortex in neonatal mice. Cereb Cortex 2012, 22: 2285–2296.

    Article  PubMed  Google Scholar 

  66. Thored P, Wood J, Arvidsson A, Cammenga J, Kokaia Z, Lindvall O. Long-term neuroblast migration along blood vessels in an area with transient angiogenesis and increased vascularization after stroke. Stroke 2007, 38: 3032–3039.

    Article  PubMed  Google Scholar 

  67. Kojima T, Hirota Y, Ema M, Takahashi S, Miyoshi I, Okano H, et al. Subventricular zone-derived neural progenitor cells migrate along a blood vessel scaffold toward the post-stroke striatum. Stem Cells 2010, 28: 545–554.

    PubMed  Google Scholar 

  68. Xiong Y, Mahmood A, Chopp M. Angiogenesis, neurogenesis and brain recovery of function following injury. Curr Opin Investig Drugs 2010, 11: 298–308.

    CAS  PubMed Central  PubMed  Google Scholar 

  69. Liman TG, Endres M. New vessels after stroke: postischemic neovascularization and regeneration. Cerebrovasc Dis 2012, 33: 492–499.

    Article  CAS  PubMed  Google Scholar 

  70. Liu N, Huang H, Lin F, Chen A, Zhang Y, Chen R, et al. Effects of treadmill exercise on the expression of netrin-1 and its receptors in rat brain after cerebral ischemia. Neuroscience 2011, 194: 349–358.

    Article  CAS  PubMed  Google Scholar 

  71. Tsuchiya A, Hayashi T, Deguchi K, Sehara Y, Yamashita T, Zhang H, et al. Expression of netrin-1 and its receptors DCC and neogenin in rat brain after ischemia. Brain Res 2007, 1159: 1–7.

    Article  CAS  PubMed  Google Scholar 

  72. Eichmann A, Thomas JL. Molecular parallels between neural and vascular development. Cold Spring Harb Perspect Med 2013, 3: a006551.

    Article  PubMed  Google Scholar 

  73. Sun H, Le T, Chang TT, Habib A, Wu S, Shen F, et al. AAV-mediated netrin-1 overexpression increases peri-infarct blood vessel density and improves motor function recovery after experimental stroke. Neurobiol Dis 2011, 44: 73–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Lu H, Wang Y, He X, Yuan F, Lin X, Xie B, et al. Netrin-1 hypere xpression in mouse brain promotes angiogenesis and long-term neurological recovery after transient focal ischemia. Stroke 2012, 43: 838–843.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Q., Liao, SJ. & Yu, J. Axon guidance factor netrin-1 and its receptors regulate angiogenesis after cerebral ischemia. Neurosci. Bull. 30, 683–691 (2014). https://doi.org/10.1007/s12264-013-1441-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1441-9

Keywords

Navigation