Skip to main content

Advertisement

Log in

P2X7 receptors in cerebral ischemia

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Cerebral ischemia is one of the most common diseases resulting in death and disability in aged people. It leads immediately to rapid energy failure, ATP depletion, and ionic imbalance, which increase extracellular ATP levels and accordingly activate P2X7 receptors. These receptors are ATP-gated cation channels and widely distributed in nerve cells, especially in the immunocompetent cells of the brain. Currently, interest in the roles of P2X7 receptors in ischemic brain injury is growing. In this review, we discuss recent research progress on the actions of P2X7 receptors, their possible mechanisms in cerebral ischemia, and the potential therapeutic value of P2X7 receptor antagonists which may provide a new target both for clinical and for research purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Franke H, Gunther A, Grosche J, Schmidt R, Rossner S, Reinhardt R, et al. P2X7 receptor expression after ischemia in the cerebral cortex of rats. J Neuropathol Exp Neurol 2004, 63: 686–699.

    PubMed  CAS  Google Scholar 

  2. Fields RD, Burnstock G. Purinergic signalling in neuron-glia interactions. Nat Rev Neurosci 2006, 7: 423–436.

    Article  PubMed  CAS  Google Scholar 

  3. Sperlagh B, Vizi ES, Wirkner K, Illes P. P2X7 receptors in the nervous system. Prog Neurobiol 2006, 78: 327–346.

    Article  PubMed  CAS  Google Scholar 

  4. Melani A, Amadio S, Gianfriddo M, Vannucchi MG, Volonte C, Bernardi G, et al. P2X7 receptor modulation on microglial cells and reduction of brain infarct caused by middle cerebral artery occlusion in rat. J Cereb Blood Flow Metab 2006, 26: 974–982.

    Article  PubMed  CAS  Google Scholar 

  5. North RA. Molecular physiology of P2X receptors. Physiol Rev 2002, 82: 1013–1067.

    PubMed  CAS  Google Scholar 

  6. Surprenant A, North RA. Signaling at purinergic P2X receptors. Annu Rev Physiol 2009, 71: 333–359.

    Article  PubMed  CAS  Google Scholar 

  7. Takenouchi T, Sekiyama K, Sekigawa A, Fujita M, Waragai M, Sugama S, et al. P2X7 receptor signaling pathway as a therapeutic target for neurodegenerative diseases. Arch Immunol Ther Exp (Warsz) 2010, 58: 91–96.

    Article  CAS  Google Scholar 

  8. Skaper SD, Debetto P, Giusti P. The P2X7 purinergic receptor: from physiology to neurological disorders. FASEB J 2010, 24: 337–345.

    Article  PubMed  CAS  Google Scholar 

  9. Arbeloa J, Perez-Samartin A, Gottlieb M, Matute C. P2X7 receptor blockade prevents ATP excitotoxicity in neurons and reduces brain damage after ischemia. Neurobiol Dis 2012, 45: 954–961.

    Article  PubMed  CAS  Google Scholar 

  10. Friedle SA, Curet MA, Watters JJ. Recent patents on novel P2X(7) receptor antagonists and their potential for reducing central nervous system inflammation. Recent Pat CNS Drug Discov 2010, 5: 35–45.

    Article  PubMed  CAS  Google Scholar 

  11. Cavaliere F, Amadio S, Sancesario G, Bernardi G, Volonte C. Synaptic P2X7 and oxygen/glucose deprivation in organotypic hippocampal cultures. J Cereb Blood Flow Metab 2004, 24: 392–398.

    Article  PubMed  CAS  Google Scholar 

  12. Le Feuvre RA, Brough D, Touzani O, Rothwell NJ. Role of P2X7 receptors in ischemic and excitotoxic brain injury in vivo. J Cereb Blood Flow Metab 2003, 23: 381–384.

    Article  PubMed  Google Scholar 

  13. Yanagisawa D, Kitamura Y, Takata K, Hide I, Nakata Y, Taniguchi T. Possible involvement of P2X7 receptor activation in microglial neuroprotection against focal cerebral ischemia in rats. Biol Pharm Bull 2008, 31: 1121–1130.

    Article  PubMed  CAS  Google Scholar 

  14. Wang LY, Cai WQ, Chen PH, Deng QY, Zhao CM. Downregulation of P2X7 receptor expression in rat oligodendrocyte precursor cells after hypoxia ischemia. Glia 2009, 57: 307–319.

    Article  PubMed  Google Scholar 

  15. Virginio C, MacKenzie A, North RA, Surprenant A. Kinetics of cell lysis, dye uptake and permeability changes in cells expressing the rat P2X7 receptor. J Physiol 1999, 519(Pt 2): 335–346.

    Article  PubMed  CAS  Google Scholar 

  16. Monif M, Burnstock G, Williams DA. Microglia: proliferation and activation driven by the P2X7 receptor. Int J Biochem Cell Biol 2010, 42: 1753–1756.

    Article  PubMed  CAS  Google Scholar 

  17. Adinolfi E, Pizzirani C, Idzko M, Panther E, Norgauer J, Di Virgilio F, et al. P2X(7) receptor: Death or life? Purinergic Signal 2005, 1: 219–227.

    Article  PubMed  CAS  Google Scholar 

  18. Anderson CM, Nedergaard M. Emerging challenges of assigning P2X7 receptor function and immunoreactivity in neurons. Trends Neurosci 2006, 29: 257–262.

    Article  PubMed  CAS  Google Scholar 

  19. Khakh BS, Burnstock G, Kennedy C, King BF, North RA, Seguela P, et al. International union of pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 2001, 53: 107–118.

    PubMed  CAS  Google Scholar 

  20. Monif M, Reid CA, Powell KL, Smart ML, Williams DA. The P2X7 receptor drives microglial activation and proliferation: a trophic role for P2X7R pore. J Neurosci 2009, 29: 3781–3791.

    Article  PubMed  CAS  Google Scholar 

  21. Wirkner K, Kofalvi A, Fischer W, Gunther A, Franke H, Groger-Arndt H, et al. Supersensitivity of P2X receptors in cerebrocortical cell cultures after in vitro ischemia. J Neurochem 2005, 95: 1421–1437.

    Article  PubMed  CAS  Google Scholar 

  22. Wang X, Arcuino G, Takano T, Lin J, Peng WG, Wan P, et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004, 10: 821–827.

    Article  PubMed  CAS  Google Scholar 

  23. Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F. ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 2005, 47: 442–448.

    Article  PubMed  CAS  Google Scholar 

  24. Le Feuvre R, Brough D, Rothwell N. Extracellular ATP and P2X7 receptors in neurodegeneration. Eur J Pharmacol 2002, 447: 261–269.

    Article  PubMed  Google Scholar 

  25. Milius D, Sperlagh B, Illes P. Up-regulation of P2X7 receptorimmunoreactivity by in vitro ischemia on the plasma membrane of cultured rat cortical neurons. Neurosci Lett 2008, 446: 45–50.

    Article  PubMed  CAS  Google Scholar 

  26. Duan S, Anderson CM, Keung EC, Chen Y, Swanson RA. P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 2003, 23: 1320–1328.

    PubMed  CAS  Google Scholar 

  27. Zeng W, Tong Y, Li H, Luo R, Mao M. P2X7 receptor modulation of the viability of radial glial clone L2.3 cells during hypoxic-ischemic brain injury. Mol Med Report 2012, 5: 1357–1361.

    CAS  Google Scholar 

  28. Nakanishi M, Mori T, Nishikawa K, Sawada M, Kuno M, Asada A. The effects of general anesthetics on P2X7 and P2Y receptors in a rat microglial cell line. Anesth Analg 2007, 104: 1136–1144.

    Article  PubMed  CAS  Google Scholar 

  29. Takenouchi T, Iwamaru Y, Sugama S, Sato M, Hashimoto M, Kitani H. Lysophospholipids and ATP mutually suppress maturation and release of IL-1 beta in mouse microglial cells using a Rho-dependent pathway. J Immunol 2008, 180: 7827–7839.

    PubMed  CAS  Google Scholar 

  30. Yu Y, Ugawa S, Ueda T, Ishida Y, Inoue K, Kyaw Nyunt A, et al. Cellular localization of P2X7 receptor mRNA in the rat brain. Brain Res 2008, 1194: 45–55.

    Article  PubMed  CAS  Google Scholar 

  31. Atkinson L, Milligan CJ, Buckley NJ, Deuchars J. An ATPgated ion channel at the cell nucleus. Nature 2002, 420: 42.

    Article  PubMed  CAS  Google Scholar 

  32. Frizzo JK, Cardoso MP, de Assis AM, Perry ML, Volonte C, Frizzo ME. Effects of acute perinatal asphyxia in the rat hippocampus. Cell Mol Neurobiol 2010, 30: 683–692.

    Article  PubMed  Google Scholar 

  33. Lee M, Lee SJ, Choi HJ, Jung YW, Frokiaer J, Nielsen S, et al. Regulation of AQP4 protein expression in rat brain astrocytes: role of P2X7 receptor activation. Brain Res 2008, 1195: 1–11.

    Article  PubMed  CAS  Google Scholar 

  34. Cavaliere F, Dinkel K, Reymann K. Microglia response and P2 receptor participation in oxygen/glucose deprivation-induced cortical damage. Neuroscience 2005, 136: 615–623.

    Article  PubMed  CAS  Google Scholar 

  35. Cavaliere F, D’Ambrosi N, Ciotti MT, Mancino G, Sancesario G, Bernardi G, et al. Glucose deprivation and chemical hypoxia: neuroprotection by P2 receptor antagonists. Neurochem Int 2001, 38: 189–197.

    Article  PubMed  CAS  Google Scholar 

  36. Skaper SD. Ion channels on microglia: therapeutic targets for neuroprotection. CNS Neurol Disord Drug Targets 2011, 10: 44–56.

    Article  PubMed  CAS  Google Scholar 

  37. Boucsein C, Zacharias R, Farber K, Pavlovic S, Hanisch UK, Kettenmann H. Purinergic receptors on microglial cells: functional expression in acute brain slices and modulation of microglial activation in vitro. Eur J Neurosci 2003, 17: 2267–2276.

    Article  PubMed  Google Scholar 

  38. Pellegatti P, Falzoni S, Pinton P, Rizzuto R, Di Virgilio F. A novel recombinant plasma membrane-targeted luciferase reveals a new pathway for ATP secretion. Mol Biol Cell 2005, 16: 3659–3665.

    Article  PubMed  CAS  Google Scholar 

  39. Browne LE, Jiang LH, North RA. New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 2010, 31: 229–237.

    Article  PubMed  CAS  Google Scholar 

  40. Kharlamov A, Jones SC, Kim DK. Suramin reduces infarct volume in a model of focal brain ischemia in rats. Exp Brain Res 2002, 147: 353–359.

    Article  PubMed  CAS  Google Scholar 

  41. Cavaliere F, Amadio S, Dinkel K, Reymann KG, Volonte C. P2 receptor antagonist trinitrophenyl-adenosine-triphosphate protects hippocampus from oxygen and glucose deprivation cell death. J Pharmacol Exp Ther 2007, 323: 70–77.

    Article  PubMed  CAS  Google Scholar 

  42. Sperlagh B, Zsilla G, Baranyi M, Illes P, Vizi ES. Purinergic modulation of glutamate release under ischemic-like conditions in the hippocampus. Neuroscience 2007, 149: 99–111.

    Article  PubMed  CAS  Google Scholar 

  43. Runden-Pran E, Tanso R, Haug FM, Ottersen OP, Ring A. Neuroprotective effects of inhibiting N-methyl-D-aspartate receptors, P2X receptors and the mitogen-activated protein kinase cascade: a quantitative analysis in organotypical hippocampal slice cultures subjected to oxygen and glucose deprivation. Neuroscience 2005, 136: 795–810.

    Article  PubMed  CAS  Google Scholar 

  44. Bano D, Nicotera P. Ca2+ signals and neuronal death in brain ischemia. Stroke 2007, 38: 674–676.

    Article  PubMed  CAS  Google Scholar 

  45. Csordas G, Hajnoczky G. SR/ER-mitochondrial local communication: calcium and ROS. Biochim Biophys Acta 2009, 1787: 1352–1362.

    Article  PubMed  CAS  Google Scholar 

  46. Iwabuchi S, Kawahara K. Functional significance of the negative-feedback regulation of ATP release via pannexin-1 hemichannels under ischemic stress in astrocytes. Neurochem Int 2011, 58: 376–384.

    Article  PubMed  CAS  Google Scholar 

  47. Lu YM, Tao RR, Huang JY, Li LT, Liao MH, Li XM, et al. P2X7 signaling promotes microsphere embolism-triggered microglia activation by maintaining elevation of Fas ligand. J Neuroinflammation 2012, 9: 172.

    Article  PubMed  Google Scholar 

  48. Faustino JV, Wang X, Johnson CE, Klibanov A, Derugin N, Wendland MF, et al. Microglial cells contribute to endogenous brain defenses after acute neonatal focal stroke. J Neurosci 2011, 31: 12992–13001.

    Article  PubMed  CAS  Google Scholar 

  49. Skaper SD, Facci L, Culbert AA, Evans NA, Chessell I, Davis JB, et al. P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia 2006, 54: 234–242.

    Article  PubMed  Google Scholar 

  50. Suzuki T, Hide I, Ido K, Kohsaka S, Inoue K, Nakata Y. Production and release of neuroprotective tumor necrosis factor by P2X7 receptor-activated microglia. J Neurosci 2004, 24: 1–7.

    Article  PubMed  CAS  Google Scholar 

  51. Chu K, Yin B, Wang J, Peng G, Liang H, Xu Z, et al. Inhibition of P2X7 receptor ameliorates transient global cerebral ischemia/reperfusion injury via modulating inflammatory responses in the rat hippocampus. J Neuroinflammation 2012, 9: 69.

    Article  PubMed  CAS  Google Scholar 

  52. Takenouchi T, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Sekigawa A, et al. The activation of P2X7 receptor induces cathepsin D-dependent production of a 20-kDa form of IL-1beta under acidic extracellular pH in LPS-primed microglial cells. J Neurochem 2011, 117: 712–723.

    PubMed  CAS  Google Scholar 

  53. Dinarello CA. Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 2009, 27: 519–550.

    Article  PubMed  CAS  Google Scholar 

  54. Bianco F, Pravettoni E, Colombo A, Schenk U, Moller T, Matteoli M, et al. Astrocyte-derived ATP induces vesicle shedding and IL-1 beta release from microglia. J Immunol 2005, 174: 7268–7277.

    PubMed  CAS  Google Scholar 

  55. Takenouchi T, Fujita M, Sugama S, Kitani H, Hashimoto M. The role of the P2X7 receptor signaling pathway for the release of autolysosomes in microglial cells. Autophagy 2009, 5: 723–724.

    Article  PubMed  CAS  Google Scholar 

  56. Sperlagh B, Kofalvi A, Deuchars J, Atkinson L, Milligan CJ, Buckley NJ, et al. Involvement of P2X7 receptors in the regulation of neurotransmitter release in the rat hippocampus. J Neurochem 2002, 81: 1196–1211.

    Article  PubMed  CAS  Google Scholar 

  57. Lo JC, Huang WC, Chou YC, Tseng CH, Lee WL, Sun SH. Activation of P2X(7) receptors decreases glutamate uptake and glutamine synthetase activity in RBA-2 astrocytes via distinct mechanisms. J Neurochem 2008, 105: 151–164.

    Article  PubMed  CAS  Google Scholar 

  58. Matute C. Glutamate and ATP signalling in white matter pathology. J Anat 2011, 219: 53–64.

    Article  PubMed  CAS  Google Scholar 

  59. Abbracchio MP, Burnstock G, Verkhratsky A, Zimmermann H. Purinergic signalling in the nervous system: an overview. Trends Neurosci 2009, 32: 19–29.

    Article  PubMed  CAS  Google Scholar 

  60. Beigi RD, Kertesy SB, Aquilina G, Dubyak GR. Oxidized ATP (oATP) attenuates proinflammatory signaling via P2 receptor-independent mechanisms. Br J Pharmacol 2003, 140: 507–519.

    Article  PubMed  CAS  Google Scholar 

  61. Sikora A, Liu J, Brosnan C, Buell G, Chessel I, Bloom BR. Cutting edge: purinergic signaling regulates radical-mediated bacterial killing mechanisms in macrophages through a P2X7-independent mechanism. J Immunol 1999, 163: 558–561.

    PubMed  CAS  Google Scholar 

  62. Choi HB, Ryu JK, Kim SU, McLarnon JG. Modulation of the purinergic P2X7 receptor attenuates lipopolysaccharide-mediated microglial activation and neuronal damage in inflamed brain. J Neurosci 2007, 27: 4957–4968.

    Article  PubMed  CAS  Google Scholar 

  63. Yan XB, Meng FJ, Song B, Zhang GY. Brain ischemia induces serine phosphorylation of neuronal nitric oxide synthase by Ca(2+)/calmodulin-dependent protein kinase II in rat hippocampus. Acta Pharmacol Sin 2004, 25: 617–622.

    PubMed  CAS  Google Scholar 

  64. Alloisio S, Cervetto C, Passalacqua M, Barbieri R, Maura G, Nobile M, et al. Functional evidence for presynaptic P2X7 receptors in adult rat cerebrocortical nerve terminals. FEBS Lett 2008, 582: 3948–3953.

    Article  PubMed  CAS  Google Scholar 

  65. Zhang Y, Deng P, Li Y, Xu ZC. Enhancement of excitatory synaptic transmission in spiny neurons after transient forebrain ischemia. J Neurophysiol 2006, 95: 1537–1544.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ai-Ping Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, HY., Li, AP. P2X7 receptors in cerebral ischemia. Neurosci. Bull. 29, 390–398 (2013). https://doi.org/10.1007/s12264-013-1338-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1338-7

Keywords

Navigation