Skip to main content
Log in

Recovery mechanisms of somatosensory function in stroke patients: implications of brain imaging studies

  • Review
  • Published:
Neuroscience Bulletin Aims and scope Submit manuscript

Abstract

Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke. With developments in brain mapping techniques, many studies have addressed the recovery of various functions in such patients. However, relatively little is known about the mechanisms of recovery of somatosensory function. Based on the previous human studies, a review of 11 relevant studies on the mechanisms underlying the recovery of somatosensory function in stroke patients was conducted based on the following topics: (1) recovery of an injured somatosensory pathway, (2) peri-lesional reorganization, (3) contribution of the unaffected somatosensory cortex, (4) contribution of the secondary somatosensory cortex, and (5) mechanisms of recovery in patients with thalamic lesions. We believe that further studies in this field using combinations of diffusion tensor imaging, functional neuroimaging, and magnetoencephalography are needed. In addition, the clinical significance, critical period, and facilitatory strategies for each recovery mechanism should be clarified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bogousslavsky J, Caplan LR. Stroke Syndromes. 2nd ed. New York: Cambridge University Press, 2001.

    Book  Google Scholar 

  2. Feigenson JS, McCarthy ML, Greenberg SD, Feigenson WD. Factors influencing outcome and length of stay in a stroke rehabilitation unit. Part 2. Comparison of 318 screened and 248 unscreened patients. Stroke 1977, 8: 657–662.

    Article  PubMed  CAS  Google Scholar 

  3. Broderick JP. William M. Feinberg Lecture: stroke therapy in the year 2025: burden, breakthroughs, and barriers to progress. Stroke 2004, 35: 205–211.

    Article  PubMed  Google Scholar 

  4. Cheung VC, d’Avella A, Tresch MC, Bizzi E. Central and sensory contributions to the activation and organization of muscle synergies during natural motor behaviors. J Neurosci 2005, 25: 6419–6434.

    Article  PubMed  CAS  Google Scholar 

  5. Van Buskirk C, Webster D. Prognostic value of sensory defect in rehabilitation of hemiplegics. Neurology 1955, 5: 407–411.

    Article  Google Scholar 

  6. Hong JH, Bai DS, Jeong JY, Choi BY, Chang CH, Kim SH, et al. Injury of the spino-thalamo-cortical pathway is necessary for central post-stroke pain. Eur Neurol 2010, 64: 163–168.

    Article  PubMed  Google Scholar 

  7. Calautti C, Baron JC. Functional neuroimaging studies of motor recovery after stroke in adults: a review. Stroke 2003, 34: 1553–1566.

    Article  PubMed  Google Scholar 

  8. Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang 2011, 118: 40–50.

    Article  PubMed  Google Scholar 

  9. Jang SH. A review of the ipsilateral motor pathway as a recovery mechanism in patients with stroke. NeuroRehabilitation 2009; 24: 315–320.

    PubMed  Google Scholar 

  10. Jang SH. Motor outcome and motor recovery mechanisms in pontine infarct: A review. NeuroRehabilitation 2012, 30: 147–152.

    PubMed  Google Scholar 

  11. Jang SH. Motor recovery mechanisms in patients with middle cerebral artery infarct: a mini-review. Eur Neurol. 2012, 68: 234–239.

    Article  PubMed  Google Scholar 

  12. Turkeltaub PE, Messing S, Norise C, Hamilton RH. Are networks for residual language function and recovery consistent across aphasic patients? Neurology 2011, 76: 1726–1734.

    Article  PubMed  Google Scholar 

  13. Cramer SC, Moore Ci, Finklestein SP, Rosen BR. A pilot study of somatotopic mapping after cortical infarct. Stroke 2000, 31: 668–671.

    Article  PubMed  CAS  Google Scholar 

  14. Forss N, Hietanen M, Salonen o, Hari R. Modified activation of somatosensory cortical network in patients with right-hemisphere stroke. Brain 1999, 122 (Pt 10): 1889–1899.

    Article  Google Scholar 

  15. Hong JH, Jang SH. Is combined functional magnetic resonance imaging and diffusion tensor tractography a useful tool for evaluation of somatosensory dysfunction recovery after intracerebral hemorrhage? Neural Regen Res 2010; 5: 1109–1112.

    Google Scholar 

  16. Jang SH. Contra-lesional somatosensory cortex activity and somatosensory recovery in two stroke patients. J Rehabil Med 2011, 43: 268–270.

    Article  PubMed  Google Scholar 

  17. Jang SH, Ahn SH, Lee J, Cho YW, Son SM. Cortical reorganization of sensori-motor function in a patient with cortical infarct. NeuroRehabilitation 2010, 26: 163–166.

    PubMed  Google Scholar 

  18. Lee MY, Kim SH, Choi BY, Chang CH, Ahn SH, Jang SH. Functional MRI finding by proprioceptive input in patients with thalamic hemorrhage. NeuroRehabilitation 2012, 30: 131–136.

    PubMed  Google Scholar 

  19. Ohara S, Lenz FA. Reorganization of somatic sensory function in the human thalamus after stroke. Ann Neurol 2001, 50: 800–803.

    Article  PubMed  CAS  Google Scholar 

  20. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P. Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage 2001, 14: 474–485.

    Article  PubMed  CAS  Google Scholar 

  21. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P, et al. On the reorganization of sensory hand areas after mono-hemispheric lesion: a functional (MEG)/ anatomical (MRI) integrative study. Brain Res 1998, 782: 153–166.

    Article  PubMed  CAS  Google Scholar 

  22. Staines WR, Black SE, Graham SJ, Mcilroy WE. Somatosensory gating and recovery from stroke involving the thalamus. Stroke 2002, 33: 2642–2651.

    Article  PubMed  Google Scholar 

  23. Weder B, Knorr U, Herzog H, Nebeling B, Kleinschmidt A, Huang Y, et al. Tactile exploration of shape after subcortical ischaemic infarction studied with PET. Brain 1994, 117(Pt 3): 593–605.

    Article  PubMed  Google Scholar 

  24. Jang SH. A review of diffusion tensor imaging studies on motor recovery mechanisms in stroke patients. NeuroRehabilitation 2011, 28: 345–352.

    PubMed  CAS  Google Scholar 

  25. Jang SH, Byun WM, Han BS, Park HJ, Bai D, Ahn YH, et al. Recovery of a partially damaged corticospinal tract in a patient with intracerebral hemorrhage: a diffusion tensor image study. Restor Neurol Neurosci 2006, 24: 25–29.

    PubMed  Google Scholar 

  26. Jang SH, Kim SH, Cho SH, Choi BY, Cho YW. Demonstration of motor recovery process in a patient with intracerebral hemorrhage. NeuroRehabilitation 2007, 22: 141–145.

    PubMed  Google Scholar 

  27. Doetsch GS, Johnston KW, Hannan CJ Jr. Physiological changes in the somatosensory forepaw cerebral cortex of adult raccoons following lesions of a single cortical digit representation. Exp Neurol 1990, 108: 162–175.

    Article  PubMed  CAS  Google Scholar 

  28. Jenkins WM, Merzenich MM. Reorganization of neocortical representations after brain injury: a neurophysiological model of the bases of recovery from stroke. Prog Brain Res 1987, 71: 249–266.

    Article  PubMed  CAS  Google Scholar 

  29. Xerri C, Merzenich MM, Peterson BE, Jenkins W. Plasticity of primary somatosensory cortex paralleling sensorimotor skill recovery from stroke in adult monkeys. J Neurophysiol 1998, 79: 2119–2148.

    PubMed  CAS  Google Scholar 

  30. Nudo RJ, Friel KM. Cortical plasticity after stroke: implications for rehabilitation. Rev Neurol (Paris) 1999, 155: 713–717.

    CAS  Google Scholar 

  31. Hlustik P, Solodkin A, Gullapalli RP, Noll DC, Small SL. Somatotopy in human primary motor and somatosensory hand representations revisited. Cereb Cortex 2001, 11: 312–321.

    Article  PubMed  CAS  Google Scholar 

  32. Jane JA, Yashon D, DeMyer W, Bucy PC. The contribution of the precentral gyrus to the pyramidal tract of man. J Neurosurg 1967, 26: 244–248.

    Article  PubMed  CAS  Google Scholar 

  33. Forss N, Jousmaki V, Hari R. Interaction between afferent input from fingers in human somatosensory cortex. Brain Res 1995, 685: 68–76.

    Article  PubMed  CAS  Google Scholar 

  34. Kapreli E, Athanasopoulos S, Papathanasiou M, Van Hecke P, Keleki D, Peeters R, et al. Lower limb sensorimotor network: issues of somatotopy and overlap. Cortex 2007, 43: 219–232.

    Article  PubMed  Google Scholar 

  35. Simoes C, Mertens M, Forss N, Jousmaki V, Lutkenhoner B, Hari R. Functional overlap of finger representations in human SI and SII cortices. J Neurophysiol 2001, 86: 1661–1665.

    PubMed  CAS  Google Scholar 

  36. Alary F, Doyon B, Loubinoux i, Carel C, Boulanouar K, Ranjeva JP, et al. Event-related potentials elicited by passive movements in humans: characterization, source analysis, and comparison to fMRI. Neuroimage 1998, 8: 377–390.

    Article  PubMed  CAS  Google Scholar 

  37. Desmedt JE, Cheron G. Central somatosensory conduction in man: neural generators and interpeak latencies of the farfield components recorded from neck and right or left scalp and earlobes. Electroencephalogr Clin Neurophysiol 1980, 50: 382–403.

    Article  PubMed  CAS  Google Scholar 

  38. Dinner DS, Luders H, Lesser RP, Morris HH. Cortical generators of somatosensory evoked potentials to median nerve stimulation. Neurology 1987, 37: 1141–1145.

    Article  PubMed  CAS  Google Scholar 

  39. Spiegel J, Tintera J, Gawehn J, Stoeter P, Treede RD. Functional MRI of human primary somatosensory and motor cortex during median nerve stimulation. Clin Neurophysiol 1999, 110: 47–52.

    Article  PubMed  CAS  Google Scholar 

  40. Blatow M, Nennig E, Durst A, Sartor K, Stippich C. fMRI reflects functional connectivity of human somatosensory cortex. Neuroimage 2007, 37: 927–936.

    Article  PubMed  Google Scholar 

  41. Hlushchuk Y, Hari R. Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. J Neurosci 2006, 26: 5819–5824.

    Article  PubMed  CAS  Google Scholar 

  42. Nihashi T, Naganawa S, Sato C, Kawai H, Nakamura T, Fukatsu H, et al. Contralateral and ipsilateral responses in primary somatosensory cortex following electrical median nerve stimulation—an fMRI study. Clin Neurophysiol 2005, 116: 842–848.

    Article  PubMed  Google Scholar 

  43. Chang MC, Ahn SH, Cho YW, Son SM, Kwon YH, Lee MY, et al. The comparison of cortical activation patterns by active exercise, proprioceptive input, and touch stimulation in the human brain: a functional MRI study. NeuroRehabilitation 2009, 25: 87–92.

    PubMed  CAS  Google Scholar 

  44. Lincoln NB, Jackson JM, Adams SA. Reliability and revision of the Nottingham Sensory Assessment for stroke patients. Physiotherapy 1998, 84: 358–365.

    Article  Google Scholar 

  45. Andrews RJ, Bringas JR, Alonzo G, Salamat MS, Khoshyomn S, Gluck DS. Corpus callosotomy effects on cerebral blood flow and evoked potentials (transcallosal diaschisis). Neurosci Lett 1993, 154: 9–12.

    Article  PubMed  CAS  Google Scholar 

  46. Liepert J, Hamzei F, Weiller C. Motor cortex disinhibition of the unaffected hemisphere after acute stroke. Muscle Nerve 2000, 23: 1761–1763.

    Article  PubMed  CAS  Google Scholar 

  47. Chakrabarti S, Alloway KD. Differential origin of projections from SI barrel cortex to the whisker representations in SII and MI. J Comp Neurol 2006, 498: 624–636.

    Article  PubMed  Google Scholar 

  48. Murray GM, Zhang HQ, Kaye AN, Sinnadurai T, Campbell DH, Rowe MJ. Parallel processing in rabbit first (SI) and second (SII) somatosensory cortical areas: effects of reversible inactivation by cooling of SI on responses in SII. J Neurophysiol 1992, 68: 703–710.

    PubMed  CAS  Google Scholar 

  49. Peters A, Jones EG. Cerebral Cortex. New York: Plenum Press, 1984.

    Google Scholar 

  50. Remy P, Zilbovicius M, Cesaro P, Amarenco P, Degos JD, Samson Y. Primary somatosensory cortex activation is not altered in patients with ventroposterior thalamic lesions: a PET study. Stroke 1999, 30: 2651–2658.

    Article  PubMed  CAS  Google Scholar 

  51. Taskin B, Jungehulsing GJ, Ruben J, Brunecker P, Krause T, Blankenburg F, et al. Preserved responsiveness of secondary somatosensory cortex in patients with thalamic stroke. Cereb Cortex 2006, 16: 1431–1439.

    Article  PubMed  Google Scholar 

  52. Turman AB, Ferrington DG, Ghosh S, Morley JW, Rowe MJ. Parallel processing of tactile information in the cerebral cortex of the cat: effect of reversible inactivation of SI on responsiveness of SII neurons. J Neurophysiol 1992, 67: 411–429.

    PubMed  CAS  Google Scholar 

  53. Wegner K, Forss N, Salenius S. Characteristics of the human contra- versus ipsilateral SII cortex. Clin Neurophysiol 2000, 111: 894–900.

    Article  PubMed  CAS  Google Scholar 

  54. Jones EG, Powell TP. Connexions of the somatic sensory cortex of the rhesus monkey. II. Contralateral cortical connexions. Brain 1969, 92: 717–730.

    Article  PubMed  CAS  Google Scholar 

  55. Pons TP, Garraghty PE, Mishkin M. Lesion-induced plasticity in the second somatosensory cortex of adult macaques. Proc Natl Acad Sci U S A 1988, 85: 5279–5281.

    Article  PubMed  CAS  Google Scholar 

  56. Merzenich MM, Kaas JH, Wall J, Nelson RJ, Sur M, Felleman D. Topographic reorganization of somatosensory cortical areas 3b and 1 in adult monkeys following restricted deafferentation. Neuroscience 1983, 8: 33–55.

    Article  PubMed  CAS  Google Scholar 

  57. Merzenich MM, Nelson RJ, Stryker MP, Cynader MS, Schoppmann A, Zook JM. Somatosensory cortical map changes following digit amputation in adult monkeys. J Comp Neurol 1984, 224: 591–605.

    Article  PubMed  CAS  Google Scholar 

  58. Pons TP, Garraghty PE, Ommaya AK, Kaas JH, Taub E, Mishkin M. Massive cortical reorganization after sensory deafferentation in adult macaques. Science 1991, 252: 1857–1860.

    Article  PubMed  CAS  Google Scholar 

  59. Wall JT, Felleman DJ, Kaas JH. Recovery of normal topography in the somatosensory cortex of monkeys after nerve crush and regeneration. Science 1983, 221: 771–773.

    Article  PubMed  CAS  Google Scholar 

  60. Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM. Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J Neurosci 1986, 6: 218–233.

    PubMed  CAS  Google Scholar 

  61. Fox K, Glazewski S, Schulze S. Plasticity and stability of somatosensory maps in thalamus and cortex. Curr opin Neurobiol 2000, 10: 494–497.

    Article  PubMed  CAS  Google Scholar 

  62. Jones EG. Cortical and subcortical contributions to activity-dependent plasticity in primate somatosensory cortex. Annu Rev Neurosci 2000, 23: 1–37.

    Article  PubMed  CAS  Google Scholar 

  63. Jones EG, Pons TP. Thalamic and brainstem contributions to large-scale plasticity of primate somatosensory cortex. Science 1998, 282: 1121–1125.

    Article  PubMed  CAS  Google Scholar 

  64. Nicolelis MA, Katz D, Krupa DJ. Potential circuit mechanisms underlying concurrent thalamic and cortical plasticity. Rev Neurosci 1998, 9: 213–224.

    PubMed  CAS  Google Scholar 

  65. Hong JH, Son SM, Jang SH. Identification of spinothalamic tract and its related thalamocortical fibers in human brain. Neurosci Lett 2010, 468: 102–105.

    Article  PubMed  CAS  Google Scholar 

  66. Yamada K, Nagakane Y, Yoshikawa K, Kizu O, Ito H, Kubota T, et al. Somatotopic organization of thalamocortical projection fibers as assessed with MR tractography. Radiology 2007, 242: 840–845.

    Article  PubMed  Google Scholar 

  67. Yang DS, Hong JH, Byun WM, Kwak SY, Ahn SH, Lee H, et al. Identification of the medial lemniscus in the human brain: combined study of functional MRI and diffusion tensor tractography. Neurosci Lett 2009, 459: 19–24.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Ho Jang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jang, S.H. Recovery mechanisms of somatosensory function in stroke patients: implications of brain imaging studies. Neurosci. Bull. 29, 366–372 (2013). https://doi.org/10.1007/s12264-013-1315-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12264-013-1315-1

Keywords

Navigation