Skip to main content
Log in

L-Dihydroxyphenylalanine (L-Dopa) Induces Brown-like Phenotype in 3T3-L1 White Adipocytes via Activation of Dopaminergic and β3-adrenergic Receptors

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

An Erratum to this article was published on 24 December 2022

This article has been updated

Abstract

Due to its propensity to boost energy expenditure, browning of white fat is emerging as an intriguing and prospective target for therapeutic intervention in obesity. Here, we report that L-dihydroxyphenylalanine (L-Dopa), used as a gold standard therapy in Parkinson’s disease, induces browning in 3T3-L1 adipocytes by increasing the expression levels of beige-specific marker genes such as Cd137, Cited1, Cidea, Tbx1, Prdm16, and Ucp1. In addition, exposure to L-Dopa induces a remarkable increase in the expressions of proteins involved in thermogenesis in white adipocytes. L-Dopa treatment also regulates 3T3-L1 adipocytes by markedly increasing protein expressions of p-AMPK, p-HSL, CPT1, ACOX1, and PPARα while decreasing FAS, ACC, C/EBPα, and PPARγ, suggesting enhanced lipolysis and fatty acid oxidation as well as reduced lipogenesis and adipogenesis, respectively. Molecular docking studies elucidated that L-Dopa binds to dopamine receptor D1 (DRD1) and β3-AR, thereby predicting the potential receptor candidates that activate protein kinase A (PKA), the master regulator of lipid metabolism. Mechanistic studies indicate that the browning potential of L-Dopa in 3T3-L1 white adipocytes is mediated by DRD1 and β3-AR activation, which consequently stimulates the PKA/p38 MAPK/ERK signaling pathway. In conclusion, L-Dopa appears to be a promising therapeutic candidate in the fight against obesity due to its inherent role in the browning of 3T3-L1 adipocytes via both the dopaminergic and adrenergic pathways. To our knowledge, this is the first report that demonstrates the browning potential of L-Dopa in white adipocytes. Our results may assist to expand the understanding on the contradictory findings in literature, related to the association between L-Dopa and weight loss observed in Parkinson’s disease patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

References

  1. Williams, E. P., M. Mesidor, K. Winters, P. M. Dubbert, and S. B. Wyatt (2015) Overweight and obesity: prevalence, consequences, and causes of a growing public health problem. Curr. Obes. Rep. 4: 363–370.

    Article  Google Scholar 

  2. Barber, T. M., P. Hanson, M. O. Weickert, and S. Franks (2019) Obesity and polycystic ovary syndrome: implications for pathogenesis and novel management strategies. Clin. Med. Insights Reprod. Health. 13: 1179558119874042.

    Article  Google Scholar 

  3. Jackson, S. E., C. H. Llewellyn, and L. Smith (2020) The obesity epidemic - nature via nurture: a narrative review of high-income countries. SAGE Open Med. 8: 2050312120918265.

    Article  Google Scholar 

  4. Vernochet, C., A. Mourier, O. Bezy, Y. Macotela, J. Boucher, M. J. Rardin, D. An, K. Y. Lee, O. R. Ilkayeva, C. M. Zingaretti, B. Emanuelli, G. Smyth, S. Cinti, C. B. Newgard, B. W. Gibson, N. G. Larsson, and C. R. Kahn (2012) Adipose-specific deletion of TFAM increases mitochondrial oxidation and protects mice against obesity and insulin resistance. Cell Metab. 16: 765–776.

    Article  CAS  Google Scholar 

  5. Whitehead, A., F. N. Krause, A. Moran, A. D. MacCannell, J. L. Scragg, B. D. McNally, E. Boateng, S. A. Murfitt, S. Virtue, J. Wright, J. Garnham, G. R. Davies, J. Dodgson, J. E. Schneider, A. J. Murray, C. Church, A. Vidal-Puig, K. K. Witte, J. L. Griffin, and L. D. Roberts (2021) Brown and beige adipose tissue regulate systemic metabolism through a metabolite interorgan signaling axis. Nat. Commun. 12: 1905.

    Article  Google Scholar 

  6. Makki, K., P. Froguel, and I. Wolowczuk (2013) Adipose tissue in obesity-related inflammation and insulin resistance: cells, cytokines, and chemokines. ISRN Inflamm. 2013: 139239.

    Article  Google Scholar 

  7. Zu, Y., H. Overby, G. Ren, Z. Fan, L. Zhao, and S. Wang (2018) Resveratrol liposomes and lipid nanocarriers: comparison of characteristics and inducing browning of white adipocytes. Colloids Surf. B Biointerfaces. 164: 414–423.

    Article  CAS  Google Scholar 

  8. Chouchani, E. T., L. Kazak, M. P. Jedrychowski, G. Z. Lu, B. K. Erickson, J. Szpyt, K. A. Pierce, D. Laznik-Bogoslavski, R. Vetrivelan, C. B. Clish, A. J. Robinson, S. P. Gygi, and B. M. Spiegelman (2016) Mitochondrial ROS regulate thermogenic energy expenditure and sulfenylation of UCP1. Nature. 532: 112–116. (Erratum published 2016, Nature 536: 360)

    Article  CAS  Google Scholar 

  9. Choi, M., S. Mukherjee, and J. W. Yun (2021) Trigonelline induces browning in 3T3-L1 white adipocytes. Phytother. Res. 35: 1113–1124.

    Article  CAS  Google Scholar 

  10. Jang, M. H., S. Mukherjee, M. J. Choi, N. H. Kang, H. G. Pham, and J. W. Yun (2020) Theobromine alleviates diet-induced obesity in mice via phosphodiesterase-4 inhibition. Eur. J. Nutr. 59: 3503–3516.

    Article  CAS  Google Scholar 

  11. Manigandan, S. and J. W. Yun (2020) Urolithin A induces brown-like phenotype in 3T3-L1 white adipocytes via β3-adrenergic receptor-p38 MAPK signaling pathway. Biotechnol. Bioprocess Eng. 25: 345–355.

    Article  CAS  Google Scholar 

  12. Song, N. J., S. H. Chang, D. Y. Li, C. J. Villanueva, and K. W. Park (2017) Induction of thermogenic adipocytes: molecular targets and thermogenic small molecules. Exp. Mol. Med. 49: e353.

    Article  Google Scholar 

  13. Duan, Y. N., X. Ge, H. W. Jiang, H. J. Zhang, Y. Zhao, J. L. Li, W. Zhang, and J. Y. Li (2020) Diphyllin improves high-fat diet-induced obesity in mice through brown and beige adipocytes. Front. Endocrinol. (Lausanne) 11: 592818.

    Article  Google Scholar 

  14. Daubner, S. C., T. Le, and S. Wang (2011) Tyrosine hydroxylase and regulation of dopamine synthesis. Arch. Biochem. Biophys. 508: 1–12.

    Article  CAS  Google Scholar 

  15. Mercuri, N. B. and G. Bernardi (2005) The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol. Sci. 26: 341–344.

    Article  CAS  Google Scholar 

  16. Tambasco, N., M. Romoli, and P. Calabresi (2018) Levodopa in Parkinson’s disease: current status and future developments. Curr. Neuropharmacol. 16: 1239–1252.

    Article  CAS  Google Scholar 

  17. Colamartino, M., L. Padua, C. Meneghini, S. Leone, T. Cornetta, A. Testa, and R. Cozzi (2012) Protective effects of L-dopa and carbidopa combined treatments on human catecholaminergic cells. DNA Cell Biol. 31: 1572–1579.

    Article  CAS  Google Scholar 

  18. Bliwise, D. L., L. M. Trotti, A. G. Wilson, S. A. Greer, C. Wood-Siverio, J. J. Juncos, S. A. Factor, A. Freeman, and D. B. Rye (2012) Daytime alertness in Parkinson’s disease: potentially dose-dependent, divergent effects by drug class. Mov. Disord. 27: 1118–1124.

    Article  CAS  Google Scholar 

  19. Sürücü, O., H. Baumann-Vogel, M. Uhl, L. L. Imbach, and C. R. Baumann (2013) Subthalamic deep brain stimulation versus best medical therapy for L-dopa responsive pain in Parkinson’s disease. Pain. 154: 1477–1479.

    Article  Google Scholar 

  20. Okun, M. S., S. S. Wu, D. Jennings, K. Marek, R. L. Rodriguez, and H. H. Fernandez (2014) Testosterone level and the effect of levodopa and agonists in early Parkinson disease: results from the INSPECT cohort. J. Clin. Mov. Disord. 1: 8.

    Article  Google Scholar 

  21. Li, Z., X. Li, X. He, X. Jia, X. Zhang, B. Lu, J. Zhao, J. Lu, L. Chen, Z. Dong, K. Liu, and Z. Dong (2020) Proteomics reveal the inhibitory mechanism of levodopa against esophageal squamous cell carcinoma. Front. Pharmacol. 11: 568459.

    Article  CAS  Google Scholar 

  22. Rivera-Calimlim, L. and J. R. Bianchine (1972) Effect of L-dopa on plasma free fatty acids and plasma glucose. Metabolism. 21: 611–617.

    Article  CAS  Google Scholar 

  23. Vardi, J., Z. Oberman, I. Rabey, M. Streifler, D. Ayalon, and M. Herzberg (1976) Weight loss in patients treated long-term with levodopa: Metabolic aspects. J. Neurol. Sci. 30: 33–40.

    Article  CAS  Google Scholar 

  24. Bachmann, C. G., A. Zapf, E. Brunner, and C. Trenkwalder (2009) Dopaminergic treatment is associated with decreased body weight in patients with Parkinson’s disease and dyskinesias. Eur. J. Neurol. 16: 895–901.

    Article  CAS  Google Scholar 

  25. Pålhagen, S., B. Lorefält, M. Carlsson, W. Ganowiak, G. Toss, M. Unosson, and A. K. Granérus (2005) Does L-dopa treatment contribute to reduction in body weight in elderly patients with Parkinson’s disease? Acta Neurol. Scand. 111: 12–20.

    Article  Google Scholar 

  26. Barichella, M., A. Marczewska, A. Vairo, M. Canesi, and G. Pezzoli (2003) Is underweightness still a major problem in Parkinson’s disease patients? Eur. J. Clin. Nutr. 57: 543–547.

    Article  CAS  Google Scholar 

  27. Levi, S., M. Cox, M. Lugon, M. Hodkinson, and A. Tomkins (1990) Increased energy expenditure in Parkinson’s disease. BMJ. 301: 1256–1257.

    Article  CAS  Google Scholar 

  28. Markus, H. S., M. Cox, and A. M. Tomkins (1992) Raised resting energy expenditure in Parkinson’s disease and its relationship to muscle rigidity. Clin. Sci. (Lond.) 83: 199–204.

    Article  CAS  Google Scholar 

  29. Kohlie, R., N. Perwitz, J. Resch, S. M. Schmid, H. Lehnert, J. Klein, and K. A. Iwen (2017) Dopamine directly increases mitochondrial mass and thermogenesis in brown adipocytes. J. Mol. Endocrinol. 58: 57–66.

    Article  CAS  Google Scholar 

  30. Tiraby, C., G. Tavernier, C. Lefort, D. Larrouy, F. Bouillaud, D. Ricquier, and D. Langin (2003) Acquirement of brown fat cell features by human white adipocytes. J. Biol. Chem. 278: 33370–33376.

    Article  CAS  Google Scholar 

  31. Sharp, L. Z., K. Shinoda, H. Ohno, D. W. Scheel, E. Tomoda, L. Ruiz, H. Hu, L. Wang, Z. Pavlova, V. Gilsanz, and S. Kajimura (2012) Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One. 7: e49452.

    Article  CAS  Google Scholar 

  32. Seale, P., S. Kajimura, W. Yang, S. Chin, L. M. Rohas, M. Uldry, G. Tavernier, D. Langin, and B. M. Spiegelman (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab. 6: 38–54.

    Article  CAS  Google Scholar 

  33. Ahmadian, M., M. J. Abbott, T. Tang, C. S. Hudak, Y. Kim, M. Bruss, M. K. Hellerstein, H. Y. Lee, V. T. Samuel, G. I. Shulman, Y. Wang, R. E. Duncan, C. Kang, and H. S. Sul (2011) Desnutrin/ATGL is regulated by AMPK and is required for a brown adipose phenotype. Cell Metab. 13: 739–748.

    Article  CAS  Google Scholar 

  34. Hardie, D. G., F. A. Ross, and S. A. Hawley (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 13: 251–262.

    Article  CAS  Google Scholar 

  35. Rosso, P., M. Fioramonti, A. Fracassi, M. Marangoni, V. Taglietti, S. Siteni, and M. Segatto (2016) AMPK in the central nervous system: physiological roles and pathological implications. Res. Rep. Biol. 7: 1–13.

    CAS  Google Scholar 

  36. Watt, M. J., A. G. Holmes, S. K. Pinnamaneni, A. P. Garnham, G. R. Steinberg, B. E. Kemp, and M. A. Febbraio (2006) Regulation of HSL serine phosphorylation in skeletal muscle and adipose tissue. Am. J. Physiol. Endocrinol. Metab. 290: E500–E508. (Erratum published 2009, Am. J. Physiol. Endocrinol. Metab. 296: E401)

    Article  CAS  Google Scholar 

  37. Kim, T. W., H. M. Cho, S. Y. Choi, Y. Suguira, T. Hayasaka, M. Setou, H. C. Koh, E. M. Hwang, J. Y. Park, S. J. Kang, H. S. Kim, H. Kim, and W. Sun (2013) (ADP-ribose) polymerase 1 and AMP-activated protein kinase mediate progressive dopaminergic neuronal degeneration in a mouse model of Parkinson’s disease. Cell Death Dis. 4: e919.

    Article  CAS  Google Scholar 

  38. Collins, S., E. Yehuda-Shnaidman, and H. Wang (2010) Positive and negative control of Ucp1 gene transcription and the role of β-adrenergic signaling networks. Int. J. Obes. (Lond.) 34 Suppl 1: S28–S33.

    Article  CAS  Google Scholar 

  39. Julien, C., L. Berthiaume, A. Hadj-Tahar, A. H. Rajput, P. J. Bédard, T. Di Paolo, P. Julien, and F. Calon (2006) Postmortem brain fatty acid profile of levodopa-treated Parkinson disease patients and parkinsonian monkeys. Neurochem. Int. 48: 404–414.

    Article  CAS  Google Scholar 

  40. Adams, F., M. Boschmann, E. Lobsien, A. Kupsch, A. Lipp, G. Franke, M. C. Leisse, J. Janke, S. Gottschalk, J. Spranger, and J. Jordan (2008) Influences of levodopa on adipose tissue and skeletal muscle metabolism in patients with idiopathic Parkinson’s disease. Eur. J. Clin. Pharmacol. 64: 863–870.

    Article  CAS  Google Scholar 

  41. Kim, K. S., Y. R. Yoon, H. J. Lee, S. Yoon, S. Y. Kim, S. W. Shin, J. J. An, M. S. Kim, S. Y. Choi, W. Sun, and J. H. Baik (2010) Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J. Biol. Chem. 285: 8905–8917.

    Article  CAS  Google Scholar 

  42. Folgueira, C., D. Beiroa, B. Porteiro, M. Duquenne, E. Puighermanal, M. F. Fondevila, S. Barja-Fernández, R. Gallego, R. Hernández-Bautista, C. Castelao, A. Senra, P. Seoane, N. Gómez, P. Aguiar, D. Guallar, M. Fidalgo, A. Romero-Pico, R. Adan, C. Blouet, J. L. Labandeira-García, F. Jeanrenaud, I. Kallo, Z. Liposits, J. Salvador, V. Prevot, C. Dieguez, M. Lopez, E. Valjent, G. Frühbeck, L. M. Seoane, and R. Nogueiras (2019) Hypothalamic dopamine signaling regulates brown fat thermogenesis. Nat. Metab. 1: 811–829.

    Article  CAS  Google Scholar 

  43. Borcherding, D. C., E. R. Hugo, G. Idelman, A. De Silva, N. W. Richtand, J. Loftus, and N. Ben-Jonathan (2011) Dopamine receptors in human adipocytes: expression and functions. PLoS One. 6: e25537.

    Article  CAS  Google Scholar 

  44. Beeler, J. A., R. P. Faust, S. Turkson, H. Ye, and X. Zhuang (2016) Low dopamine D2 receptor increases vulnerability to obesity via reduced physical activity, not increased appetitive motivation. Biol. Psychiatry. 79: 887–897.

    Article  CAS  Google Scholar 

  45. de Leeuw van Weenen, J. E., E. T. Parlevliet, J. P. Schröder-van der Elst, S. A. van den Berg, K. Willems van Dijk, J. A. Romijn, and H. Pijl (2011) Pharmacological modulation of dopamine receptor D2-mediated transmission alters the metabolic phenotype of diet induced obese and diet resistant C57Bl6 mice. Exp. Diabetes Res. 2011: 928523.

    Article  Google Scholar 

  46. Brizuela, M., A. Antipov, W. W. Blessing, and Y. Ootsuka (2019) Activating dopamine D2 receptors reduces brown adipose tissue thermogenesis induced by psychological stress and by activation of the lateral habenula. Sci. Rep. 9: 19512.

    Article  CAS  Google Scholar 

  47. Ootsuka, Y., C. A. Heidbreder, J. J. Hagan, and W. W. Blessing (2007) Dopamine D2 receptor stimulation inhibits cold-initiated thermogenesis in brown adipose tissue in conscious rats. Neuroscience. 147: 127–135.

    Article  CAS  Google Scholar 

  48. Raffaelli, F. M., J. Resch, R. Oelkrug, K. A. Iwen, and J. Mittag (2020) Dopamine receptor D1- and D2-agonists do not spark brown adipose tissue thermogenesis in mice. Sci. Rep. 10: 20203.

    Article  CAS  Google Scholar 

  49. Chen, J., M. Rusnak, R. R. Luedtke, and A. Sidhu (2004) D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J. Biol. Chem. 279: 39317–39330.

    Article  CAS  Google Scholar 

  50. Hondares, E., R. Iglesias, A. Giralt, F. J. Gonzalez, M. Giralt, T. Mampel, and F. Villarroya (2011) Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J. Biol. Chem. 286: 12983–12990.

    Article  CAS  Google Scholar 

  51. Wang, H., J. Xu, P. Lazarovici, R. Quirion, and W. Zheng (2018) cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11: 255.

    Article  Google Scholar 

  52. Pham, H. G., J. P. Park, and J. W. Yun (2020) BMP11 negatively regulates lipid metabolism in C2C12 muscle cells. Biotechnol. Bioprocess Eng. 25: 670–680.

    Article  CAS  Google Scholar 

  53. Choi, M. J., S. Mukherjee, and J. W. Yun (2021) Loss of ADAMTS15 promotes browning in 3T3-L1 white adipocytes via activation of β3-adrenergic receptor. Biotechnol. Bioprocess Eng. 26: 188–200.

    Article  CAS  Google Scholar 

  54. Lee, T. L., C. T. Hsu, S. T. Yen, C. W. Lai, and J. T. Cheng (1998) Activation of beta3-adrenoceptors by exogenous dopamine to lower glucose uptake into rat adipocytes. J. Auton. Nerv. Syst. 74: 86–90.

    Article  CAS  Google Scholar 

  55. Lei, S. (2014) Cross interaction of dopaminergic and adrenergic systems in neural modulation. Int. J. Physiol. Pathophysiol. Pharmacol. 6: 137–142.

    Google Scholar 

Download references

Acknowledgement

This study was supported by a Daegu University Research Grant 2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong Won Yun.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haddish, K., Yun, J.W. L-Dihydroxyphenylalanine (L-Dopa) Induces Brown-like Phenotype in 3T3-L1 White Adipocytes via Activation of Dopaminergic and β3-adrenergic Receptors. Biotechnol Bioproc E 27, 818–832 (2022). https://doi.org/10.1007/s12257-021-0361-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0361-1

Keywords

Navigation