Skip to main content
Log in

Sedimentation and Rheological Study of Microalgal Cell (Chlorella sp. HS2) Suspension

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microalgae (Chlorella sp. HS2) have a high potential as a new biomass filler resource. Microalgae suspension is investigated depending on pH condition, focusing on microscopic sedimentation and a rheological behavior in order to understand in-depth the behavior of Chlorella sp. HS2 for harvesting process design. In terms of sedimentation analysis, it is found that Chlorella sp. HS2 cells settle down due to high density of 1.56 gcm−3. Meanwhile due to its small size and dilute concentration, the settling velocity is too slow for harvesting by natural sedimentation. Chlorella sp. HS2 cells undergo weak aggregation in the medium depending on pH condition. When the Chlorella sp. HS2 suspension (pH 5.4) is adjusted at pH 2.5, the surfaces of the microalgal cells turn neutral and cells are aggregated by van der Waals force between cells, leading to relatively faster sedimentation compared to Chlorella sp. HS2 cells without pH adjustment. The aggregation of Chlorella sp. HS2 cells depending on pH condition is reflected in rheological properties of the suspension. At pH 2.5, shear viscosity of the Chlorella sp. HS2 suspension increases and the suspension shows shear thinning behavior, meaning that the neutralized surface of Chlorella sp. HS2 makes cells aggregation. However, the aggregation of microalgal HS2 cells is easily dissociated and aligned along shear flow. Therefore, for the successful harvesting of biomass Chlorella sp. HS2, the flow and colloidal condition must be considered along with coagulation for rapid harvesting of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Olaizola, M. (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol. Eng. 20: 459–466.

    Article  CAS  Google Scholar 

  2. Becker, E. W. (2007) Micro-algae as a source of protein. Biotechnol. Adv. 25: 207–210.

    Article  CAS  Google Scholar 

  3. Ariede, M. B., T. M. Candido, A. L. M. Jacome, M. V. R. Velasco, J. C. M. de Carvalho, and A. R. Baby (2017) Cosmetic attributes of algae — a review. Algal Res. 25: 483–487.

    Article  Google Scholar 

  4. ’t Lam, G. P., M. H. Vermuë, M. Eppink, R. H. Wijffels, and C. van den Berg (2018) Multi-product microalgae biorefineries: from concept towards reality. Trends Biotechnol. 36: 216–227.

    Article  Google Scholar 

  5. Singh, H. M., R. Kothari, R. Gupta, and V. V. Tyagi (2019) Biofixation of flue gas from thermal power plants with algal biomass: overview and research perspectives. J. Environ. Manage. 245: 519–539.

    Article  CAS  Google Scholar 

  6. Yun, J.-H., D.-H. Cho, J. Heo, Y. J. Lee, B. Lee, Y. K. Chang, and H.-S. Kim (2019) Evaluation of the potential of Chlorella sp. HS2, an algal isolate from a tidal rock pool, as an industrial algal crop under a wide range of abiotic conditions. J. Appl. Phycol. 31: 2245–2258.

    Article  CAS  Google Scholar 

  7. Yun, J.-H., M. Pierrelée, D.-H. Cho, U. Kim, J. Heo, D.-Y. Choi, Y. J. Lee, B. Lee, H. Kim, B. Habermann, Y. K. Chang, and H.-S. Kim (2021) Transcriptomic analysis of Chlorella sp. HS2 suggests the overflow of acetyl-CoA and NADPH cofactor induces high lipid accumulation and halotolerance. Food Energy Secur. 10: e267.

    Article  Google Scholar 

  8. Kim, U., D. H. Cho, J. Heo, J. H. Yun, D. Y. Choi, K. Cho, and H. S. Kim (2020) Two-stage cultivation strategy for the improvement of pigment productivity from high-density heterotrophic algal cultures. Bioresour. Technol. 302: 122840.

    Article  CAS  Google Scholar 

  9. Yaakob, Z., E. Ali, A. Zainal, M. Mohamad, and M. S. Takriff (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J. Biol. Res. (Thessalon) 21: 6.

    Article  Google Scholar 

  10. Cho, D. H., R. Ramanan, J. Heo, Z. Kang, B. H. Kim, C. Y. Ahn, H. M. Oh, and H. S. Kim (2015) Organic carbon, influent microbial diversity and temperature strongly influence algal diversity and biomass in raceway ponds treating raw municipal wastewater. Bioresour. Technol. 191: 481–487.

    Article  CAS  Google Scholar 

  11. Kuttiyathil, M. S., M. M. Mohamed, and S. Al-Zuhair (2021) Using microalgae for remediation of crude petroleum oil—water emulsions. Biotechnol. Prog. 37: e3098.

    Article  CAS  Google Scholar 

  12. Yun, J.-H., D.-H. Cho, B. Lee, Y. J. Lee, D.-Y. Choi, H.-S. Kim, and Y. K. Chang (2020) Utilization of the acid hydrolysate of defatted Chlorella biomass as a sole fermentation substrate for the production of biosurfactant from Bacillus subtilis C9. Algal Res. 47: 101868.

    Article  Google Scholar 

  13. Grossmann, L., J. Hinrichs, and J. Weiss (2019) Solubility and aggregation behavior of protein fractions from the heterotrophically cultivated microalga Chlorella protothecoides. Food Res. Int. 116: 283–290.

    Article  CAS  Google Scholar 

  14. Ba, F., A. V. Ursu, C. Laroche, and G. Djelveh (2016) Haematococcus pluvialis soluble proteins: extraction, characterization, concentration/fractionation and emulsifying properties. Bioresour. Technol. 200: 147–152.

    Article  CAS  Google Scholar 

  15. Böcker, L., P. Bertsch, D. Wenner, S. Teixeira, J. Bergfreund, S. Eder, P. Fischer, and A. Mathys (2021) Effect of Arthrospira platensis microalgae protein purification on emulsification mechanism and efficiency. J. Colloid Interface Sci. 584: 344–353.

    Article  Google Scholar 

  16. Caporgno, M. P., I. Haberkorn, L. Böcker, and A. Mathys (2019) Cultivation of Chlorella protothecoides under different growth modes and its utilisation in oil/water emulsions. Bioresour. Technol. 288: 121476.

    Article  CAS  Google Scholar 

  17. Onen Cinar, S., Z. K. Chong, M. A. Kucuker, N. Wieczorek, U. Cengiz, and K. Kuchta (2020) Bioplastic production from microalgae: a review. Int. J. Environ. Res. Public Health 17: 3842.

    Article  Google Scholar 

  18. Zeller, M. A., R. Hunt, A. Jones, and S. Sharma (2013) Bioplastics and their thermoplastic blends from Spirulina and Chlorella microalgae. J. Appl. Polym. Sci. 130: 3263–3275.

    Article  CAS  Google Scholar 

  19. Torres, S., R. Navia, R. C. Murdy, P. Cooke, M. Misra, and A. K. Mohanty (2015) Green composites from residual microalgae biomass and poly(butylene adipate-co-terephthalate): processing and plasticization. ACS Sustain. Chem. Eng. 3: 614–624.

    Article  CAS  Google Scholar 

  20. Abdelaziz, A. E. M., G. B. Leite, and P. C. Hallenbeck (2013) Addressing the challenges for sustainable production of algal biofuels: II. Harvesting and conversion to biofuels. Environ. Technol. 34: 1807–1836.

    Article  CAS  Google Scholar 

  21. Roy, M. and K. Mohanty (2019) A comprehensive review on microalgal harvesting strategies: current status and future prospects. Algal Res. 44: 101683.

    Article  Google Scholar 

  22. Cooney, M., G. Young, and N. Nagle (2009) Extraction of bio-oils from microalgae. Sep. Purif. Rev. 38: 291–325.

    Article  CAS  Google Scholar 

  23. Vandamme, D., I. Foubert, and K. Muylaert (2013) Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 31: 233–239.

    Article  CAS  Google Scholar 

  24. Gerde, J. A., L. Yao, J. Lio, Z. Wen, and T. Wang (2014) Microalgae flocculation: impact of flocculant type, algae species and cell concentration. Algal Res. 3: 30–35.

    Article  Google Scholar 

  25. Zhu, L., Z. Li, and E. Hiltunen (2018) Microalgae Chlorella vulgaris biomass harvesting by natural flocculant: effects on biomass sedimentation, spent medium recycling and lipid extraction. Biotechnol. Biofuels 11: 183.

    Article  Google Scholar 

  26. Matter, I. A., V. K. H. Bui, M. Jung, J. Y. Seo, Y.-E. Kim, Y.-C. Lee, and Y.-K. Oh (2019) Flocculation harvesting techniques for microalgae: a review. Appl. Sci. (Basel) 9: 3069.

    Article  CAS  Google Scholar 

  27. Nayak, M., N. Rashid, W. I. Suh, B. Lee, and Y. K. Chang (2019) Performance evaluation of different cationic flocculants through pH modulation for efficient harvesting of Chlorella sp. HS2 and their impact on water reusability. Renew. Energy 136: 819–827.

    Article  CAS  Google Scholar 

  28. Xue, Y., Y. Li, X. Zou, K. Xu, H. Wen, B. Zhang, R. Li, P. Shao, B. Fu, and Y. Gong (2019) Optimization of thermal pre-flocculation treatment for effective air flotation harvesting of microalgae. J. Chem. Technol. Biotechnol. 94: 1760–1769.

    Article  CAS  Google Scholar 

  29. Wileman, A., A. Ozkan, and H. Berberoglu (2012) Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresour. Technol. 104: 432–439.

    Article  CAS  Google Scholar 

  30. Bernaerts, T. M. M., C. Kyomugasho, N. Van Looveren, L. Gheysen, I. Foubert, M. E. Hendrickx, and A. M. Van Loey (2018) Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr. Polym. 195: 542–550.

    Article  CAS  Google Scholar 

  31. Bernaerts, T. M. M., A. Panozzo, V. Doumen, I. Foubert, L. Gheysen, K. Goiris, P. Moldenaers, M. E. Hendrickx, and A. M. V. Loey (2017) Microalgal biomass as a (multi)functional ingredient in food products: rheological properties of microalgal suspensions as affected by mechanical and thermal processing. Algal Res. 25: 452–463.

    Article  Google Scholar 

  32. Xia, L., R. Huang, Y. Li, and S. Song (2017) The effect of growth phase on the surface properties of three oleaginous microalgae (Botryococcus sp. FACGB-762, Chlorella sp. XJ-445 and Desmodesmus bijugatus XJ-231). PLoS One 12: e0186434.

    Article  Google Scholar 

  33. Moreira, H. R., F. Munarin, R. Gentilini, L. Visai, P. L. Granja, M. C. Tanzi, and P. Petrini (2014) Injectable pectin hydrogels produced by internal gelation: pH dependence of gelling and rheological properties. Carbohydr. Polym. 103: 339–347.

    Article  CAS  Google Scholar 

  34. Koh, H. G., N. K. Kang, E. K. Kim, W. Suh, W. K. Park, B. Lee, and Y. K. Chang (2019) Isolation and characterization of novel Chlorella species with cold resistance and high lipid accumulation for biodiesel production. J. Microbiol. Biotechnol. 29: 952–961.

    Article  CAS  Google Scholar 

  35. Larson, R. G. (1999) The Structure and Rheology of Complex Fluids. Oxford University Press, New York, NY, USA.

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIP) (No. 2020M3H7A1098305, No. 2021 R1A2C1004746).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joung Sook Hong.

Ethics declarations

The authors declare no conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, J.S., Shin, W., Nam, H. et al. Sedimentation and Rheological Study of Microalgal Cell (Chlorella sp. HS2) Suspension. Biotechnol Bioproc E 27, 451–460 (2022). https://doi.org/10.1007/s12257-021-0275-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0275-y

Keywords

Navigation