Skip to main content
Log in

Crosslinker-free Bovine Serum Albumin-loaded Chitosan/alginate Nanocomplex for pH-responsive Bursting Release of Oral-administered Protein

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The application of protein-based drugs in oral delivery system is limited due to the harsh environment of the gastrointestinal (GI) tract. Herein, a pH-responsive nano-sized complex with chitosan (CH) and alginate (AL) was fabricated without cross-linker as an oral vehicle for bursting release of protein at the target location to enhance the efficacy. Using bovine serum albumin (BSA) as a model cargo protein, four optimized complexation processes (LG1, LG2, LG3, and LG4) were selected by changes of variables (total concentration (TC), the ratio of CH to AL (CH/AL, w/w), and mixing time (MT)) and further modifications using encapsulation efficiency and complex size. Size, ζ-potential, morphology, BSA release, and swelling degrees of the complexes were evaluated under simulated gastrointestinal conditions (pH 2.0 and 7.4). LG1 and LG4 completely retained BSA in complexes at pH 2.0 after 2 h (BSA release percentage is 0%) and exhibited bursting release at pH 7.4 after 1 h (84.03 and 67.59%, respectively). Low absolute ζ-potential value (about 10 mV), large size (over 10000 nm) and polymer morphology demonstrated that the pH-responsive complexes inhibited protein release at pH 2.0 through the molecule-molecule aggregation. Relatively high absolute ζ-potential value (about 45 mV), ideal swelling ability (around 2), and polymer morphology revealed that the complex promoted the release at 7.4 through both micro- and macroscale swelling. Results demonstrate that the CH-BSA-AL complex through LG4 has a potential for administering proteinbased drugs or vaccines orally due to its highest effective dose (78.78 μg/mL).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Usmani, S. S., G. Bedi, J. S. Samuel, S. Singh, S. Kalra, P. Kumar, A. A. Ahuja, M. Sharma, A. Gautam, and G. P. S. Raghava (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One. 12: e0181748.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lagassé, H. A. D., A. Alexaki, V. L. Simhadri, N. H. Katagiri, W. Jankowski, Z. E. Sauna, and C. Kimchi-Sarfaty (2017) Recent advances in (therapeutic protein) drug development. F1000Res. 6: 113.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Pawar, R., A. Ben-Ari, and A. J. Domb (2004) Protein and peptide parenteral controlled delivery. Expert Opin. Biol. Ther. 4: 1203–1212.

    Article  CAS  PubMed  Google Scholar 

  4. Shone, A., J. Burnside, S. Chipchase, F. Game, and W. Jeffcoate (2006) Probing the validity of the probe-to-bone test in the diagnosis of osteomyelitis of the foot in diabetes. Diabetes Care. 29: 945.

    Article  PubMed  Google Scholar 

  5. Messer, L. H., C. Berget, C. Beatson, S. Polsky, and G. P. Forlenza (2018) Preserving skin integrity with chronic device use in diabetes. Diabetes Technol. Ther. 20: S254–S264.

    Article  PubMed  Google Scholar 

  6. Richardson, T. and D. Kerr (2003) Skin-related complications of insulin therapy: Epidemiology and emerging management strategies. Am. J. Clin. Dermatol. 4: 661–667.

    Article  PubMed  Google Scholar 

  7. Kerbleski, J. F. and A. B. Gottlieb (2009) Dermatological complications and safety of anti-TNF treatments. Gut. 58: 1033–1039.

    Article  CAS  PubMed  Google Scholar 

  8. Yoshida, M., N. Kamei, K. Muto, J. Kunisawa, K. Takayama, N. A. Peppas, and M. Takeda-Morishita (2017) Complexation hydrogels as potential carriers in oral vaccine delivery systems. Eur. J. Pharm. Biopharm. 112: 138–142.

    Article  CAS  PubMed  Google Scholar 

  9. Biswas, S., M. Chattopadhyay, K. K. Sen, and M. K. Saha (2015) Development and characterization of alginate coated low molecular weight chitosan nanoparticles as new carriers for oral vaccine delivery in mice. Carbohydr. Polym. 121: 403–410.

    Article  CAS  PubMed  Google Scholar 

  10. Marasini, N., M. Skwarczynski, and I. Toth (2014) Oral delivery of nanoparticle-based vaccines. Expert Rev. Vaccines. 13: 1361–1376.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou, X. and A. L. W. Po (1991) Peptide and protein drugs: II. Non-parenteral routes of delivery. Int. J. Pharm. 75: 117–130.

    Article  CAS  PubMed Central  Google Scholar 

  12. Fjellestad-Paulsen, A., P. Höglund, S. Lundin, and O. Paulsen (1993) Pharmacokinetics of 1-deamino-8-D-arginine vasopressin after various routes of administration in healthy volunteers. Clin. Endocrinol. 38: 177–182.

    Article  CAS  Google Scholar 

  13. Brown, T. D., K. A. Whitehead, and S. Mitragotri (2020) Materials for oral delivery of proteins and peptides. Nat. Rev. Mater. 5: 127–148.

    Article  Google Scholar 

  14. Villa, L. L., R. L. R. Costa, C. A. Petta, R. P. Andrade, K. A. Ault, A. R. Giuliano, C. M. Wheeler, L. A. Koutsky, C. Malm, M. Lehtinen, F. E. Skjeldestad, S. E. Olsson, M. Steinwall, D. R. Brown, R. J. Kurman, B. M. Ronnett, M. H. Stoler, A. Ferenczy, D. M. Harper, G. M. Tamms, J. Yu, L. Lupinacci, R. Railkar, F. J. Taddeo, K. U. Jansen, M. T. Esser, H. L. Sings, A. J. Saah, and E. Barr (2005) Prophylactic quadrivalent human papillomavirus (types 6, 11, 16, and 18) L1 virus-like particle vaccine in young women: a randomised double-blind placebo-controlled multicentre phase II efficacy trial. Lancet Oncol. 6: 271–278.

    Article  PubMed  Google Scholar 

  15. Giannini, S. L., E. Hanon, P. Moris, M. Van Mechelen, S. Morel, F. Dessy, M. A. Fourneau, B. Colau, J. Suzich, G. Losonksy, M. T. Martin, G. Dubin, and M. A. Wettendorff (2006) Enhanced humoral and memory B cellular immunity using HPV16/18 L1 VLP vaccine formulated with the MPL/aluminium salt combination (AS04) compared to aluminium salt only. Vaccine. 24: 5937–5949.

    Article  CAS  PubMed  Google Scholar 

  16. Slupetzky, K., R. Gambhira, T. D. Culp, S. Shafti-Keramat, C. Schellenbacher, N. D. Christensen, R. B. S. Roden, and R. Kirnbauer (2007) A papillomavirus-like particle (VLP) vaccine displaying HPV16 L2 epitopes induces cross-neutralizing antibodies to HPV11. Vaccine. 25: 2001–2010.

    Article  CAS  PubMed  Google Scholar 

  17. Baca-Estrada, M. E., M. Foldvari, M. Snider, K. Harding, B. Kournikakis, L. A. Babiuk, and P. Griebel (2000) Intranasal immunization with liposome-formulated Yersinia pestis vaccine enhances mucosal immune responses. Vaccine. 18: 2203–2211.

    Article  CAS  PubMed  Google Scholar 

  18. Karkada, M., G. M. Weir, T. Quinton, A. Fuentes-Ortega, and M. Mansour (2010) A liposome-based platform, VacciMax®, and its modified water-free platform DepoVax™ enhance efficacy of in vivo nucleic acid delivery. Vaccine. 28: 6176–6182.

    Article  CAS  PubMed  Google Scholar 

  19. Demento, S. L., W. Cui, J. M. Criscione, E. Stern, J. Tulipan, S. M. Kaech, and T. M. Fahmy (2012) Role of sustained antigen release from nanoparticle vaccines in shaping the T cell memory phenotype. Biomaterials. 33: 4957–4964.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Dhar, S., W. L. Daniel, D. A. Giljohann, C. A. Mirkin, and S. J. Lippard (2009) Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum (IV) warheads. J. Am. Chem. Soc. 131: 14652–14653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elzoghby, A. O., W. M. Samy, and N. A. Elgindy (2012) Albuminbased nanoparticles as potential controlled release drug delivery systems. J. Control. Release. 157: 168–182.

    Article  CAS  PubMed  Google Scholar 

  22. Muzzarelli, R. A. (1997) Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell. Mol. Life Sci. 53: 131–140.

    Article  CAS  PubMed  Google Scholar 

  23. Shimoda, J., H. Onishi, and Y. Machida (2001) Bioadhesive characteristics of chitosan microspheres to the mucosa of rat small intestine. Drug Dev. Ind. Pharm. 27: 567–576.

    Article  CAS  PubMed  Google Scholar 

  24. Sahoo, P., K. H. Leong, S. Nyamathulla, Y. Onuki, K. Takayama, and L. Y. Chung (2019) Chitosan complexed carboxymethylated iota-carrageenan oral insulin particles: Stability, permeability and in vivo evaluation. Mater. Today Commun. 20: 100557.

    Article  CAS  Google Scholar 

  25. Remuñán-López, C., A. Portero, J. L. Vila-Jato, and M. J. Alonso (1998) Design and evaluation of chitosan/ethylcellulose mucoadhesive bilayered devices for buccal drug delivery. J. Control. Release. 55: 143–152.

    Article  PubMed  Google Scholar 

  26. George, M. and T. E. Abraham (2006) Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. J. Control. Release. 114: 1–14.

    Article  CAS  PubMed  Google Scholar 

  27. Orive, G., S. Ponce, R. M. Hernandez, A. R. Gascon, M. Igartua, and J. L. Pedraz (2002) Biocompatibility of microcapsules for cell immobilization elaborated with different type of alginates. Biomaterials. 23: 3825–3831.

    Article  CAS  PubMed  Google Scholar 

  28. Li, R., P. De Bank, and R. Mrsny (2016) Increase alginate-chitosan nanoparticles transport efficiency through the epithelium by attaching nt-PE onto surface. Proceedings of the World Congress on Recent Advances in Nanotechnology. April 1–2. Prague, Czech Republic.

    Google Scholar 

  29. Chen, S. C., Y. C. Wu, F. L. Mi, Y. H. Lin, L. C. Yu, and H. W. Sung (2004) A novel pH-sensitive hydrogel composed of N,Ocarboxymethyl chitosan and alginate cross-linked by genipin for protein drug delivery. J. Control. Release. 96: 285–300.

    Article  CAS  PubMed  Google Scholar 

  30. Banks, S. R., K. Enck, M. Wright, E. C. Opara, and M. E. Welker (2019) Chemical modification of alginate for controlled oral drug delivery. J. Agric. Food Chem. 67: 10481–10488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cikrikci, S., B. Mert, and M. H. Oztop (2018) Development of pH sensitive alginate/gum tragacanth based hydrogels for oral insulin delivery. J. Agric. Food Chem. 66: 11784–11796.

    Article  CAS  PubMed  Google Scholar 

  32. Wu, T., S. Yu, D. Lin, Z. Wu, J. Xu, J. Zhang, Z. Ding, Y. Miao, T. Liu, T. Chen, and X. Cai (2020) Preparation, characterization, and release behavior of doxorubicin hydrochloride from dual cross-linked chitosan/alginate hydrogel beads. ACS Appl. Bio Mater. 3: 3057–3065.

    Article  CAS  PubMed  Google Scholar 

  33. Khajuria, D. K., R. Vasireddi, M. K. Priydarshi, and D. R. Mahapatra (2020) Ionic diffusion and drug release behavior of core-shell-functionalized alginate-chitosan-based hydrogel. ACS Omega. 5: 758–765.

    Article  CAS  PubMed  Google Scholar 

  34. Damera, D. P., S. Kaja, L. S. L. Janardhanam, S. Alim, V. V. K. Venuganti, and A. Nag (2019) Synthesis, detailed characterization, and dual drug delivery application of BSA loaded aquasomes. ACS Appl. Bio Mater. 2: 4471–4484.

    Article  CAS  PubMed  Google Scholar 

  35. Damera, J., L. Schorn, A. Landers, H. Holtmann, K. Berr, N. R. Kübler, C. Sproll, M. Rana, and R. Depprich (2019) Release kinetics of the model protein FITC-BSA from different polymercoated bovine bone substitutes. Head Face Med. 15: 27.

    Article  Google Scholar 

  36. Jing, Z. W., Z. W. Ma, C. Li, Y. Y. Jia, M. Luo, X. X. Ma, S. Y. Zhou, and B. L. Zhang (2017) Chitosan cross-linked with poly(ethylene glycol)dialdehyde via reductive amination as effective controlled release carriers for oral protein drug delivery. Bioorg. Med. Chem. Lett. 27: 1003–1006.

    Article  CAS  PubMed  Google Scholar 

  37. Xu, Y., L. An, L. Chen, H. Xu, D. Zeng, and G. Wang (2018) Controlled hydrothermal synthesis of strontium-substituted hydroxyapatite nanorods and their application as a drug carrier for proteins. Adv. Powder Technol. 29: 1042–1048.

    Article  CAS  Google Scholar 

  38. Takka, S. and A. Gürel (2020) Evaluation of chitosan/alginate beads using experimental design: formulation and in vitro characterization. AAPS PharmSciTech. 11: 460–466.

    Article  Google Scholar 

  39. Tapia, C., E. Costa, M. Moris, J. Sapag-Hagar, F. Valenzuela, and C. Basualto (2002) Study of the influence of the pH media dissolution, degree of polymerization, and degree of swelling of the polymers on the mechanism of release of diltiazem from matrices based on mixtures of chitosan/alginate. Drug Dev. Ind. Pharm. 28: 217–224.

    Article  CAS  PubMed  Google Scholar 

  40. Cheng, L., C. Bulmer, and A. Margaritis (2015) Characterization of novel composite alginate chitosan-carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr. Drug Deliv. 12: 351–357.

    Article  CAS  PubMed  Google Scholar 

  41. Krieg, R. C., Y. Dong, K. Schwamborn, and R. Knuechel (2005) Protein quantification and its tolerance for different interfering reagents using the BCA-method with regard to 2D SDS PAGE. J. Biochem. Biophys. Methods. 65: 13–19.

    Article  CAS  PubMed  Google Scholar 

  42. Li, X., X. Kong, S. Shi, X. Zheng, G. Guo, Y. Wei, and Z. Qian (2008) Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 8: 89.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Yu, C. Y., B. C. Yin, W. Zhang, S. X. Cheng, X. Z. Zhang, and R. X. Zhuo (2009) Composite microparticle drug delivery systems based on chitosan, alginate and pectin with improved pHsensitive drug release property. Colloids Surf. B. Biointerfaces. 68: 245–249.

    Article  CAS  PubMed  Google Scholar 

  44. Chen, B., W. Kong, N. Wang, G. Zhu, and F. Wang (2019) Oleylamine-mediated synthesis of small NaYbF4 nanoparticles with tunable size. Chem. Mater. 31: 4779–4786.

    Article  CAS  Google Scholar 

  45. Gao, X., Y. Zhang, H. Zhang, and Q. Wu (2012) Effects of machine tool configuration on its dynamics based on orthogonal experiment method. Chin. J. Aeronaut. 25: 285–291.

    Article  Google Scholar 

  46. Yeh, C. H., M. H. Lin, P. C. Chang, and L. W. Kang (2020) Enhanced visual attention-guided deep neural networks for image classification. IEEE Access. 8: 163447–163457.

    Article  Google Scholar 

  47. Arunkumar, R., K. V. H. Prashanth, and V. Baskaran (2013) Promising interaction between nanoencapsulated lutein with low molecular weight chitosan: Characterization and bioavailability of lutein in vitro and in vivo. Food Chem. 141: 327–337.

    Article  CAS  PubMed  Google Scholar 

  48. Lee, M., J. W. Nah, Y. Kwon, J. J. Koh, K. S. Ko, and S. W. Kim (2001) Water-soluble and low molecular weight chitosan-based plasmid DNA delivery. Pharm. Res. 18: 427–431.

    Article  CAS  PubMed  Google Scholar 

  49. Chae, S. Y., M. K. Jang, and J. W. Nah (2005) Influence of molecular weight on oral absorption of water soluble chitosans. J. Control. Release. 102: 383–394.

    Article  CAS  PubMed  Google Scholar 

  50. Khan, S. and N. M. Ranjha (2014) Effect of degree of crosslinking on swelling and on drug release of low viscous chitosan/ poly(vinyl alcohol) hydrogels. Polym. Bull. 71: 2133-2158.

  51. Marín, R. R. R., F. Babick, and L. Hillemann (2017) Zeta potential measurements for non-spherical colloidal particlespractical issues of characterisation of interfacial properties of nanoparticles. Colloids Surf. A. Physicochem. Eng. Asp. 532: 516–521.

    Article  Google Scholar 

  52. Caetano, L. A., A. J. Almeida, and L. M. D. Gonçalves (2016) Effect of experimental parameters on alginate/chitosan microparticles for BCG encapsulation. Mar. Drugs. 14: 90.

    Article  PubMed Central  Google Scholar 

  53. Dudek, G. and R. Turczyn (2018) New type of alginate/chitosan microparticle membranes for highly efficient pervaporative dehydration of ethanol. RSC Adv. 8: 39567–39578.

    Article  CAS  Google Scholar 

  54. Lakkakula, J. R., T. Matshaya, and R. W. M. Krause (2017) Cationic cyclodextrin/alginate chitosan nanoflowers as 5-fluorouracil drug delivery system. Mater. Sci. Eng. C. Mater. Biol. Appl. 70: 169–177.

    Article  CAS  PubMed  Google Scholar 

  55. Mujtaba, M. A., K. A. M. Hassan, and M. Imran (2018) Chitosan-alginate nanoparticles as a novel drug delivery system for rutin. Int. J. Adv. Biotechnol. Res. 9: 1895–903.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by National Research Foundation (NRF, 2021R1A2C1004626) and Cooperative Research Program for Agriculture Science and Technology Development (PJ01320502) of Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Sik Choi.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Conflict of Interest

The authors have no conflict of interest to declare.

Electronic Supplementary Material

12257_2021_243_MOESM1_ESM.pdf

Crosslinker-free Bovine Serum Albumin-loaded Chitosan/alginate Nanocomplex for pH-responsive Bursting Release of Oral-administered Protein

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Jin, H., Razzak, M.A. et al. Crosslinker-free Bovine Serum Albumin-loaded Chitosan/alginate Nanocomplex for pH-responsive Bursting Release of Oral-administered Protein. Biotechnol Bioproc E 27, 40–50 (2022). https://doi.org/10.1007/s12257-021-0243-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0243-6

Keywords

Navigation