Skip to main content
Log in

Evaluation of the Effects, Causes, and Risks of Gold Nanorods Promoting Cell Proliferation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Gold nanoparticles differently affect cells depending on physical parameters (shape, size, aspect ratio, etc.). Therefore, it is essential to analyze shape- and concentration-dependent effects on cells and use them safely because new materials can simultaneously have both potential and threats. This research investigated the gold nanorod’s (GNR) shape effect and the concentration criteria on cell viability and why GNR promotes cell proliferation. Unlike 10-nm and 60-nm gold nanospheres, GNR of 3.4 aspect ratio generated intracellular reactive oxygen species (ROS), and ROS affected cell viability depending on concentrations. GNRs between 0.75 pM and 37 pM produced trace ROS, which promoted HDFn (human dermal fibroblasts, neonatal) cell viability. GNRs of 7.5 nM or more produced more ROS, which reduced HDFn cell viability. On the other hand, GNRs around 0.745 nm promoted HeLa cell viability. GNRs of 3.75 nM or more repressed HeLa cell viability. Hydrogen peroxide of 0.01 and 0.1 µM promoted HDFn cell viability by 7% and 9.9%. This observation could speculate that GNR-generated ROS promoted cell proliferation via activated the ERK1/2 signaling pathway. Therefore, picomolar GNRs could be used to enhance skin cell viability in cosmetics and wound healing. On the other hand, nanomolar GNRs could be applied to kill cancer cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Park, C. R., W. J. Rhee, K. W. Kim, and B. H. Hwang (2019) Colorimetric biosensor using dual-amplification of enzyme-free reaction through universal hybridization chain reaction system. Biotechnol. Bioeng. 116: 1567–1574.

    Article  CAS  Google Scholar 

  2. Lee, W. and B. H. Hwang (2020) Plasmonic biosensor controlled by DNAzyme for on-site genetic detection of pathogens. Biotechnol. J. 15: e1900329.

    Article  Google Scholar 

  3. Lim, S. H., Y. C. Ryu, and B. H. Hwang (2021) Aptamer-immobilized gold nanoparticles enable facile and on-site detection of Staphylococcus aureus. Biotechnol. Bioprocess Eng. 26: 107–113.

    Article  CAS  Google Scholar 

  4. Kim, S. H., Y. C. Ryu, H. M. D. Wang, and B. H. Hwang (2020) Optimally fabricated chitosan particles containing ovalbumin induced cellular and humoral immunity in immunized mice. Biotechnol. Bioprocess Eng. 25: 681–689.

    Article  CAS  Google Scholar 

  5. Paithankar, D., B. H. Hwang, G. Munavalli, A. Kauvar, J. Lloyd, R. Blomgren, L. Faupel, T. Meyer, and S. Mitragotri (2015) Ultrasonic delivery of silica-gold nanoshells for photothermolysis of sebaceous glands in humans: nanotechnology from the bench to clinic. J. Control. Release. 206: 30–36.

    Article  CAS  Google Scholar 

  6. Ryu, Y. C., K. A. Kim, B. C. Kim, H. M. D. Wang, and B. H. Hwang (2021) Novel fusion peptide-mediated siRNA delivery using self-assembled nanocomplex. J. Nanobiotechnology. 19: 44.

    Article  CAS  Google Scholar 

  7. Laurent, S., D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, and R. N. Muller (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev. 108: 2064–2110. (Erratum published 2010, Chem. Rev. 110: 2574).

    Article  CAS  Google Scholar 

  8. Khan, I., K. Saeed, and I. Khan (2019) Nanoparticles: properties, applications and toxicities. Arab. J. Chem. 12: 908–931.

    Article  CAS  Google Scholar 

  9. Xie, X., J. Liao, X. Shao, Q. Li, and Y. Lin (2017) The effect of shape on cellular uptake of gold nanoparticles in the forms of stars, rods, and triangles. Sci. Rep. 7: 3827.

    Article  Google Scholar 

  10. Woźniak, A., A. Malankowska, G Nowaczyk, B. F. Grześkowiak, K. Tuśnio, R. Słomski, A. Zaleska-Medynska, and S. Jurga (2017) Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 28: 92.

    Article  Google Scholar 

  11. Chithrani, B. D., A. A. Ghazani, and W. C. Chan (2006) Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 6: 662–668.

    Article  CAS  Google Scholar 

  12. Qiu, Y., Y. Liu, L. Wang, L. Xu, R. Bai, Y. Ji, X. Wu, Y. Zhao, Y. Li, and C. Chen (2010) Surface chemistry and aspect ratio mediated cellular uptake of Au nanorods. Biomaterials. 31: 7606–7619.

    Article  CAS  Google Scholar 

  13. Singh, P., S. Pandit, V. R. S. S. Mokkapati, A. Garg, V. Ravikumar, and I. Mijakovic (2018) Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci. 19: 1979.

    Article  Google Scholar 

  14. Bagheri, S., M. Yasemi, E. Safaie-Qamsari, J. Rashidiani, M. Abkar, M. Hassani, S. A. Mirhosseini, and H. Kooshki (2018) Using gold nanoparticles in diagnosis and treatment of melanoma cancer. Artif. Cells Nanomed. Biotechnol. 46(sup1): 462–471.

    Article  CAS  Google Scholar 

  15. Chuang, S. M. Y. H. Lee, R. Y. Liang, G. D. Roam, Z. M. Zeng, H. F. Tu, S. K. Wang, and P. J. Chueh (2013) Extensive evaluations of the cytotoxic effects of gold nanoparticles. Biochim. Biophys. Acta. 1830: 4960–4973.

    Article  CAS  Google Scholar 

  16. Guerrero-Florez, V., S. C. Mendez-Sanchez, O. A. Patrón-Soberano, V. Rodríguez-González, D. Blach, and F. MartínezO (2020) Gold nanoparticle-mediated generation of reactive oxygen species during plasmonic photothermal therapy: a comparative study for different particle sizes, shapes, and surface conjugations. J. Mater. Chem. B. 8: 2862–2875.

    Article  CAS  Google Scholar 

  17. Mahmoud, N. N., L. M. Al-Kharabsheh, E. A. Khalil, and R. Abu-Dahab (2019) Interaction of gold nanorods with human dermal fibroblasts: cytotoxicity, cellular uptake, and wound healing. Nanomaterials (Basel) 9: 1131. (Erratum published 2021, Nanomaterials (Basel). 11: 1364)

    Article  CAS  Google Scholar 

  18. Alkilany, A. M., P. K. Nagaria, C. R. Hexel, T. J. Shaw, C. J. Murphy, and M. D. Wyatt (2009) Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects. Small. 5: 701–708.

    Article  CAS  Google Scholar 

  19. Day, R. M. and Y. J. Suzuki (2006) Cell proliferation, reactive oxygen and cellular glutathione. Dose Response. 3: 425–442.

    PubMed  PubMed Central  Google Scholar 

  20. Cao, Y. (2018) Applications of cellulose nanomaterials in pharmaceutical science and pharmacology. Express Polym. Lett. 12: 768–780.

    Article  CAS  Google Scholar 

  21. Milkovic, L., A. Cipak Gasparovic, M. Cindric, P. A. Mouthuy, and N. Zarkovic (2019) Short overview of ROS as cell function regulators and their implications in therapy concepts. Cells. 8: 793.

    Article  CAS  Google Scholar 

  22. Shi, K., Z. Gao, T. Q. Shi, P. Song, L. J. Ren, H. Huang, and X. J. Ji (2017) Reactive oxygen species-mediated cellular stress response and lipid accumulation in oleaginous microorganisms: the state of the art and future perspectives. Front. Microbiol. 8: 793.

    Article  Google Scholar 

  23. Schieber, M. and N. S. Chandel (2014) ROS function in redox signaling and oxidative stress. Curr. Biol. 24: R453–R462.

    Article  CAS  Google Scholar 

  24. Pinto, M. C. X., A. H. Kihara, V. A. Goulart, F. M. Tonelli, K. N. Gomes, H. Ulrich, and R. R. Resende (2015) Calcium signaling and cell proliferation. Cell. Signal. 27: 2139–2149.

    Article  CAS  Google Scholar 

  25. Hong, Z., J. A. Cabrera, S. Mahapatra, S. Kutty, E. K. Weir, and S. L. Archer (2014) Activation of the EGFR/p38/JNK pathway by mitochondrial-derived hydrogen peroxide contributes to oxygen-induced contraction of ductus arteriosus. J. Mol. Med. (Berl). 92: 995–1007.

    Article  CAS  Google Scholar 

  26. Perillo, B., M. Di Donato, A. Pezone, E. Di Zazzo, P. Giovannelli, G. Galasso, G. Castoria, and A. Migliaccio (2020) ROS in cancer therapy: the bright side of the moon. Exp. Mol. Med. 52: 192–203.

    Article  CAS  Google Scholar 

  27. Lingabathula, H. and N. Yellu (2016) Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods. Toxicol. Mech. Methods. 26: 340–347.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Incheon National University Research Grant in 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong Hee Hwang.

Ethics declarations

The authors declare no financial or commercial conflict of interest.

Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Hwang, B.H. Evaluation of the Effects, Causes, and Risks of Gold Nanorods Promoting Cell Proliferation. Biotechnol Bioproc E 27, 213–220 (2022). https://doi.org/10.1007/s12257-021-0161-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0161-7

Keywords

Navigation