Skip to main content
Log in

Cilostazol Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma Cells by Activating AMPK

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma (HCC) is the most common primary liver cancer and one of the leading causes of cancer-related death. Cilostazol, an antiplatelet drug, elicits anticancer effects on human squamous cell carcinoma and colon cancer cells. We previously reported that cilostazol protects normal mature hepatocytes from alcohol-induced apoptotic cell death. In addition, cilostazol stimulates liver regeneration after hepatectomy. Therefore, this study evaluated whether cilostazol elicits pro- or anti-proliferative effects on HCC using Hep3B and SK-Hep1 cells. Cilostazol inhibited proliferation of HCC cells by inducing apoptosis. Additionally, cilostazol induced G0/G1 cell cycle arrest and decreased expression of cyclin D1 and proliferating cell nuclear antigen. Activation of AMP-activated protein kinase (AMPK) and inhibition of extracellular signal-regulated kinase (ERK) and AKT signaling were associated with the anti-proliferative effect of cilostazol. LY294002 and PD98059, inhibitors of AKT and ERK, respectively, enhanced the anti-proliferative effect of cilostazol. By contrast, inhibition of AMPK using compound C or AMPK-targeting siRNA abolished the anti-proliferative effect of cilostazol. Moreover, AMPK inhibition reversed the down-regulation of AKT/EKR induced by cilostazol, indicating negative cross-talk between AMPK and AKT/ERK. These findings provide evidence that cilostazol exerts anti-tumor activity in HCC by counter-regulating AMPK and AKT/ERK signaling. Taken together, our findings suggest that cilostazol may provide clinical benefits in HCC patients by selectively targeting HCC cells without interfering with liver function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tabrizian, P., S. Roayaie, and M. E. Schwartz (2014) Current management of hepatocellular carcinoma. World J. Gastroenterol. 20: 10223–10237.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Tejeda-Maldonado, J., I. García-Juárez, J. Aguirre-Valadez, A. González-Aguirre, M. Vilatobá-Chapa, A. Armengol-Alonso, F. Escobar-Penagos, A. Torre, J. F. Sánchez-Ávila, and D. L. Carrillo-Pérez (2015) Diagnosis and treatment of hepatocellular carcinoma: An update. World J. Hepatol. 7: 362–376.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Gomez, D., H. Z. Malik, G. K. Bonney, V. Wong, G. J. Toogood, J. P. A. Lodge, and K. R. Prasad (2007) Steatosis predicts postoperative morbidity following hepatic resection for colorectal metastasis. Br. J. Surg. 94: 1395–1402.

    Article  CAS  PubMed  Google Scholar 

  4. Nordlinger, B., H. Sorbye, B. Glimelius, G J. Poston, P. M. Schlag, P. Rougier, W. O. Bechstein, J. N. Primrose, E. T. Walpole, M. Finch-Jones, D. Jaeck, D. Mirza, R. W. Parks, L. Collette, M. Praet, U. Bethe, E. Van Cutsem, W. Scheithauer, and T. Gruenberger (2008) Perioperative chemotherapy with FOLFOX4 and surgery versus surgery alone for resectable liver metastases from colorectal cancer (EORTC Intergroup trial 40983): a randomised controlled trial. Lancet. 371: 1007–1016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi, J. H. and P. D. Line (2014) Effect of liver regeneration on malignant hepatic tumors. World J. Gastroenterol. 20: 16167–16177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Poon, R. T., S. T. Fan, C. B. O’Suilleabhain, and J. Wong (2002) Aggressive management of patients with extrahepatic and intrahepatic recurrences of hepatocellular carcinoma by combined resection and locoregional therapy. J. Am. Coll. Surg. 195: 311–318.

    Article  PubMed  Google Scholar 

  7. He, C., T. Wu, and Y. Hao (2018) Anlotinib induces hepatocellular carcinoma apoptosis and inhibits proliferation via Erk and Akt pathway. Biochem. Biophys. Res. Commun. 503: 3093–3099.

    Article  CAS  PubMed  Google Scholar 

  8. Wang, J., Z. Luo, T. Yao, W. Li, and J. Pu (2019) LINC00707 promotes hepatocellular carcinoma progression through activating ERK/JNK/AKT pathway signaling pathway. J. Cell. Physiol. 234: 6908–6916.

    Article  CAS  PubMed  Google Scholar 

  9. Matter, M. S., T. Decaens, J. B. Andersen, and S. S. Thorgeirsson (2014) Targeting the mTOR pathway in hepatocellular carcinoma: current state and future trends. J. Hepatol. 60: 855–865.

    Article  CAS  PubMed  Google Scholar 

  10. Grabinski, N., F. Ewald, B. T. Hofmann, K. Staufer, U. Schumacher, B. Nashan, and M. Jücker (2012) Combined targeting of AKT and mTOR synergistically inhibits proliferation of hepatocellular carcinoma cells. Mol. Cancer. 11: 85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ito, Y., Y. Sasaki, M. Horimoto, S. Wada, Y. Tanaka, A. Kasahara, T. Ueki, T. Hirano, H. Yamamoto, J. Fujimoto, E. Okamoto, N. Hayashi, and M. Hori (1998) Activation of mitogen-activated protein kinases/extracellular signal-regulated kinases in human hepatocellular carcinoma. Hepatology. 27: 951–958.

    Article  CAS  PubMed  Google Scholar 

  12. Hoffmann, K., L. Shibo, Z. Xiao, T. Longerich, M. W. Büchler, and P. Schemmer (2011) Correlation of gene expression of ATP-binding cassette protein and tyrosine kinase signaling pathway in patients with hepatocellular carcinoma. Anticancer Res. 31: 3883–3890.

    CAS  PubMed  Google Scholar 

  13. Liu, L., Y. Cao, C. Chen, X. Zhang, A. McNabola, D. Wilkie, S. Wilhelm, M. Lynch, and C. Carter (2006) Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 66: 11851–11858.

    Article  CAS  PubMed  Google Scholar 

  14. Wang, S. S., Y. H. Chen, N. Chen, L. J. Wang, D. X. Chen, H. L. Weng, S. Dooley, and H. G. Ding (2017) Hydrogen sulfide promotes autophagy of hepatocellular carcinoma cells through the PI3K/Akt/mTOR signaling pathway. Cell Death Dis. 8: e2688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang, S. and G. Liu (2017) Targeting the Ras/Raf/MEK/ERK pathway in hepatocellular carcinoma. Oncol. Lett. 13: 1041–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Akula, S. M., S. L. Abrams, L. S. Steelman, M. R. Emma, G. Augello, A. Cusimano, A. Azzolina, G. Montalto, M. Cervello, and J. A. McCubrey (2019) RAS/RAF/MEK/ERK, PI3K/PTEN/AKT/mTORC1 and TP53 pathways and regulatory miRs as therapeutic targets in hepatocellular carcinoma. Expert Opin. Ther. Targets. 23: 915–929.

    Article  CAS  PubMed  Google Scholar 

  17. Mihaylova, M. M. and R. J. Shaw (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 13: 1016–1023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruderman, N. B., D. Carling, M. Prentki, and J. M. Cacicedo (2013) AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 123: 2764–2772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cordero, M. D., M. R. Williams, and B. Ryffel (2018) AMP-activated protein kinase regulation of the NLRP3 inflammasome during aging. Trends Endocrinol. Metab. 29: 8–17.

    Article  CAS  PubMed  Google Scholar 

  20. Umezawa, S., T. Higurashi, and A. Nakajima (2017) AMPK: Therapeutic target for diabetes and cancer prevention. Curr. Pharm. Des. 23: 3629–3644.

    Article  CAS  PubMed  Google Scholar 

  21. Cao, W., J. Li, Q. Hao, J. V. Vadgama, and Y. Wu (2019) AMP-activated protein kinase: a potential therapeutic target for triple-negative breast cancer. Breast Cancer Res. 21: 29.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Merlen, G., G. Gentric, S. Celton-Morizur, M. Foretz, J. E. Guidotti, V. Fauveau, J. Leclerc, B. Viollet, and C. Desdouets (2014) AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression. J. Hepatol. 60: 152–159.

    Article  CAS  PubMed  Google Scholar 

  23. Huang, J., D. Zhang, L. Lin, R. Jiang, J. Dai, L. Tang, Y. Yang, P. Ge, B. Wang, and L. Zhang (2018) Potential roles of AMP-activated protein kinase in liver regeneration in mice with acute liver injury. Mol. Med. Rep. 17: 5390–5395.

    CAS  PubMed  Google Scholar 

  24. Jiang, X., H. Y. Tan, S. Teng, Y. T. Chan, D. Wang, and N. Wang (2019) The role of AMP-activated protein kinase as a potential target of treatment of hepatocellular carcinoma. Cancers. 11: 647.

    Article  CAS  PubMed Central  Google Scholar 

  25. Kawaguchi, T., M. Hayakawa, H. Koga, and T. Torimura (2015) Effects of fucoidan on proliferation, AMP-activated protein kinase, and downstream metabolism- and cell cycle-associated molecules in poorly differentiated human hepatoma HLF cells. Int. J. Oncol. 46: 2216–2222.

    Article  CAS  PubMed  Google Scholar 

  26. Ferretti, A. C., F. Hidalgo, F. M. Tonucci, E. Almada, A. Pariani, M. C. Larocca, and C. Favre (2019) Metformin and glucose starvation decrease the migratory ability of hepatocellular carcinoma cells: targeting AMPK activation to control migration. Sci. Rep. 9: 2815.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cheng, J., T. Huang, Y. Li, Y. Guo, Y. Zhu, Q. Wang, X. Tan, W. Chen, Y. Zhang, W. Cheng, T. Yamamoto, X. Jing, and J. Huang (2014) AMP-activated protein kinase suppresses the in vitro and in vivo proliferation of hepatocellular carcinoma. PLoS One. 9: e93256.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Kwon, H. Y., J. H. Kim, B. Kim, S. K. Srivastava, and S. H. Kim (2018) Regulation of SIRT1/AMPK axis is critically involved in gallotannin-induced senescence and impaired autophagy leading to cell death in hepatocellular carcinoma cells. Arch. Toxicol. 92: 241–257.

    Article  CAS  PubMed  Google Scholar 

  29. Park, S. Y., Y. K. Lee, H. J. Kim, O. J. Park, and Y. M. Kim (2016) AMPK interacts with β-catenin in the regulation of hepatocellular carcinoma cell proliferation and survival with selenium treatment. Oncol. Rep. 35: 1566–1572.

    Article  CAS  PubMed  Google Scholar 

  30. Chiang, P. C., S. C. Lin, S. L. Pan, C. H. Kuo, I. L. Tsai, M. T. Kuo, W. C. Wen, P. Chen, and J. H. Guh (2010) Antroquinonol displays anticancer potential against human hepatocellular carcinoma cells: a crucial role of AMPK and mTOR pathways. Biochem. Pharmacol. 79: 162–171.

    Article  CAS  PubMed  Google Scholar 

  31. Ishii, H., T. Aoyama, H. Takahashi, Y. Kumada, D. Kamoi, T. Sakakibara, N. Umemoto, S. Suzuki, A. Tanaka, Y. Ito, and T. Murohara (2016) Treatment with cilostazol improves clinical outcome after endovascular therapy in hemodialysis patients with peripheral artery disease. J. Cardiol. 67: 199–204.

    Article  PubMed  Google Scholar 

  32. Ratchford, E. V. (2017) Medical management of claudication. J. Vasc. Surg. 66: 275–280.

    Article  PubMed  Google Scholar 

  33. Fujii, T., H. Obara, K. Matsubara, N. Fujimura, H. Yagi, T. Hibi, Y. Abe, M. Kitago, M. Shinoda, O. Itano, M. Tanabe, Y. Masugi, M. Sakamoto, and Y. Kitagawa (2017) Oral administration of cilostazol improves survival rate after rat liver ischemia/reperfusion injury. J. Surg. Res. 213: 207–214.

    Article  CAS  PubMed  Google Scholar 

  34. Jeon, B. H., Y. H. Lee, M. R. Yun, S. H. Kim, B. W. Lee, E. S. Kang, H. C. Lee, and B. S. Cha (2015) Increased expression of ATP-binding cassette transporter A1 (ABCA1) as a possible mechanism for the protective effect of cilostazol against hepatic steatosis. Metabolism. 64: 1444–1453.

    Article  CAS  PubMed  Google Scholar 

  35. Kabil, S. L. (2018) Beneficial effects of cilostazol on liver injury induced by common bile duct ligation in rats: Role of SIRT1 signaling pathway. Clin. Exp. Pharmacol. Physiol. 45: 1341–1350.

    Article  CAS  PubMed  Google Scholar 

  36. Xie, X., X. Xu, C. Sun, and Z. Yu (2018) Protective effects of cilostazol on ethanol-induced damage in primary cultured hepatocytes. Cell Stress Chaperones. 23: 203–211.

    Article  CAS  PubMed  Google Scholar 

  37. Lee, Y. J., M. S. Shu, J. Y. Kim, Y. H. Kim, K. H. Sim, W. J. Sung, and J. R. Eun (2019) Cilostazol protects hepatocytes against alcohol-induced apoptosis via activation of AMPK pathway. PLoS One. 14: e0211415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. von Heesen, M., S. Dold, S. Müller, C. Scheuer, O. Kollmar, M. K. Schilling, M. D. Menger, and M. R. Moussavian (2015) Cilostazol improves hepatic blood perfusion, microcirculation, and liver regeneration after major hepatectomy in rats. Liver Transpl. 21: 792–800.

    Article  PubMed  Google Scholar 

  39. Strowitzki, M. J., S. Dold, M. von Heesen, C. Körbel, C. Scheuer, M. R. Moussavian, M. K. Schilling, O. Kollmar, and M. D. Menger (2014) The phosphodiesterase 3 inhibitor cilostazol does not stimulate growth of colorectal liver metastases after major hepatectomy. Clin. Exp. Metastasis. 31: 795–803.

    Article  CAS  PubMed  Google Scholar 

  40. Uzawa, K., A. Kasamatsu, T. Baba, K. Usukura, Y. Saito, K. Sakuma, M. Iyoda, Y. Sakamoto, K. Ogawara, M. Shiiba, and H. Tanzawa (2013) Targeting phosphodiesterase 3B enhances cisplatin sensitivity in human cancer cells. Cancer Med. 2: 40–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kangawa, Y., T. Yoshida, K. Maruyama, M. Okamoto, T. Kihara, M. Nakamura, M. Ochiai, Y. Hippo, S. M. Hayashi, and M. Shibutani (2017) Cilostazol and enzymatically modified isoquercitrin attenuate experimental colitis and colon cancer in mice by inhibiting cell proliferation and inflammation. Food Chem. Toxicol. 100: 103–114.

    Article  CAS  PubMed  Google Scholar 

  42. Jiao, P., Y. S. Zhou, J. X. Yang, Y. L. Zhao, Q. Q. Liu, C. Yuan, and F. Z. Wang (2013) MK-2206 induces cell cycle arrest and apoptosis in HepG2 cells and sensitizes TRAIL-mediated cell death. Mol. Cell. Biochem. 382: 217–224.

    Article  CAS  PubMed  Google Scholar 

  43. Lee, C. H., Y. J. Hung, Y. S. Shieh, C. Y. Chien, Y. J. Hsu, C. Y. Lin, C. F. Chiang, C. L. Huang, and C. H. Hsieh (2017) Cilostazol inhibits uremic toxin-induced vascular smooth muscle cell dysfunction: role of Axl signaling. Am. J. Physiol. Renal. Physiol. 312: F398–F406.

    Article  CAS  PubMed  Google Scholar 

  44. Yoo, A. R., S. H. Koh, G. W. Cho, and S. H. Kim (2010) Inhibitory effects of cilostazol on proliferation of vascular smooth muscle cells (VSMCs) through suppression of the ERK1/2 pathway. J. Atheroscler. Thromb. 17: 1009–1018.

    Article  CAS  PubMed  Google Scholar 

  45. Zheng, L., W. Yang, F. Wu, C. Wang, L. Yu, L. Tang, B. Qiu, Y. Li, L. Guo, M. Wu, G. Feng, D. Zou, and H. Wang (2013) Prognostic significance of AMPK activation and therapeutic effects of metformin in hepatocellular carcinoma. Clin. Cancer Res. 19: 5372–5380.

    Article  CAS  PubMed  Google Scholar 

  46. Chan, K. M., C. F. Kuo, J. T. Hsu, M. J. Chiou, Y. C. Wang, T. H. Wu, C. F. Lee, T. J. Wu, H. S. Chou, and W. C. Lee (2017) Metformin confers risk reduction for developing hepatocellular carcinoma recurrence after liver resection. Liver Int. 37: 434–441.

    Article  CAS  PubMed  Google Scholar 

  47. Seo, Y. S., Y. J. Kim, M. S. Kim, K. S. Suh, S. B. Kim, C. J. Han, Y. J. Kim, W. I. Jang, S. H. Kang, H. J. Tchoe, C. M. Park, A. J. Jo, H. J. Kim, J. A. Choi, H. J. Choi, M. N. Polak, and M. J. Ko (2016) Association of metformin use with cancer-specific mortality in hepatocellular carcinoma after curative resection: A nationwide population-based study. Medicine. 95: e3527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Schulte, L., B. Scheiner, T. Voigtländer, S. Koch, N. Schweitzer, S. Marhenke, P. Ivanyi, M. P. Manns, T. Rodt, J. B. Hinrichs, A. Weinmann, M. Pinter, A. Vogel, and M. M. Kirstein (2019) Treatment with metformin is associated with a prolonged survival in patients with hepatocellular carcinoma. Liver Int. 39: 714–726.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by research grants from Daegu Catholic University in 2018 (No.20185003).

The authors have no potential conflicts of interest to disclose. Neither ethical approval nor informed consent was required for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youn Ju Lee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sim, K.H., Shu, MS., Kim, S. et al. Cilostazol Induces Apoptosis and Inhibits Proliferation of Hepatocellular Carcinoma Cells by Activating AMPK. Biotechnol Bioproc E 26, 776–785 (2021). https://doi.org/10.1007/s12257-021-0002-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-021-0002-8

Keywords

Navigation