Skip to main content
Log in

Rapid and Efficient BAC Recombineering: Gain & Loss Screening System

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Recombineering has been developed to modify bacterial artificial chromosome (BAC) via homologous recombination. Nevertheless, as a screening strategy to identify the correct clone was not properly developed, it was difficult to obtain a correct clone within a limited time period. To address these issues, we developed a new screening method (a gain & loss screening system) that enables the efficient identification of the recombineered clone. Simple inoculation of cells into LB medium with appropriate antibiotics visually revealed the positive clones within 24 h. DNA sequencing confirmed 100% accuracy of this screening method by showing that all positive clones exhibited recombinant sequences. Furthermore, our new method allowed us to complete the entire procedure consisting of 1st recombineering, flip-out and 2nd recombineering in just 13 days. Overall, our new strategy may provide a new avenue for BAC recombineering, as evidenced by markedly increased accuracy and subsequently shortened recombineering duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BAC:

Bacterial artificial chromosome

GOI:

gene-of-interest

HR:

homology region

KanR :

kanamycin resistant gene

CamR :

chloramphenicol resistant gene

AmpR :

ampicillin resistant gene

NeoR :

neomycin resistance gene

Kan:

kanamycin

Cam:

chloramphenicol

Amp:

ampicillin

BTV:

BAC targeting vector

BTC:

BAC targeting cassette

CTV:

Cam targeting vector

CTC:

Cam targeting cassette

Fwd:

forward

Rev:

reverse

FLP :

flippase

SOC:

Super Optimal broth with Catabolite repression

DW:

Distilled Water

OD:

optimal density

References

  1. Wurm, F. M. (2004) Production of recombinant protein therapeutics in cultivated mammalian cells. Nat. Biotechnol. 22: 1393–1398.

    Article  CAS  Google Scholar 

  2. Rita Costa, A., M. Elisa Rodrigues, M. Henriques, J. Azeredo, and R. Oliveira (2010) Guidelines to cell engineering for monoclonal antibody production. Eur. J. Pharm. Biopharm. 74: 127–138.

    Article  CAS  Google Scholar 

  3. Kunert, R. and E. Casanova (2013) Recent advances in recombinant protein production: BAC-based expression vectors, the bigger the better. Bioengineered. 4: 258–261.

    Article  Google Scholar 

  4. Giraldo, P. and L. Montoliu (2001) Size matters: Use of YACs, BACs and PACs in transgenic animals. Transgenic Res. 10: 83–103.

    Article  CAS  Google Scholar 

  5. Sparwasser, T. and G. Eberl (2007) BAC to immunology—bacterial artificial chromosome-mediated transgenesis for targeting of immune cells. Immunology. 121: 308–313.

    Article  CAS  Google Scholar 

  6. Van Keuren, M. L., G. B. Gavrilina, W. E. Filipiak, M. G. Zeidler, and T. L. Saunders (2009) Generating transgenic mice from bacterial artificial chromosomes: transgenesis efficiency, integration and expression outcomes. Transgenic Res. 18: 769–785.

    Article  Google Scholar 

  7. Deal, K. K., V. A. Cantrell, R. L. Chandler, T. L. Saunders, D. P. Mortlock, and E. M. Southard-Smith (2006) Distant regulatory elements in a Sox10-beta GEO BAC transgene are required for expression of Sox10 in the enteric nervous system and other neural crest-derived tissues. Dev. Dyn. 235: 1413–1432.

    Article  CAS  Google Scholar 

  8. Probst, F. J., R. A. Fridell, Y. Raphael, T. L. Saunders, A. Wang, Y. Liang, R. J. Morell, J. W. Touchman, R. H. Lyons, K. Noben-Trauth, T. B. Friedman, and S. A. Camper (1998) Correction of deafness in shaker-2 mice by an unconventional myosin in a BAC transgene. Science. 280: 1444–1447.

    Article  CAS  Google Scholar 

  9. Zhang, Y., F. Buchholz, J. P. Muyrers, and A. F. Stewart (1998) A new logic for DNA engineering using recombination in Escherichia coli. Nat. Genet. 20: 123–128.

    Article  CAS  Google Scholar 

  10. Muyrers, J. P., Y. Zhang, V. Benes, G. Testa, W. Ansorge, and A. F. Stewart (2000) Point mutation of bacterial artificial chromosomes by ET recombination. EMBO Rep. 1: 239–243.

    Article  CAS  Google Scholar 

  11. Lee, E. C., D. Yu, J. Martinez de Velasco, L. Tessarollo, D. A. Swing, D. L. Court, N. A. Jenkins, and N. G. Copeland (2001) A highly efficient Escherichia coli-based chromosome engineering system adapted for recombinogenic targeting and subcloning of BAC DNA. Genomics. 73: 56–65.

    Article  CAS  Google Scholar 

  12. Yu, D., H. M. Ellis, E. C. Lee, N. A. Jenkins, N. G. Copeland, and D. L. Court (2000) An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. U S A. 97: 5978–5983.

    Article  CAS  Google Scholar 

  13. Zhang, Y., C. Riesterer, A. M. Ayrall, F. Sablitzky, T. D. Littlewood, and M. Reth (1996) Inducible site-directed recombination in mouse embryonic stem cells. Nucleic Acids Res. 24: 543–548.

    Article  CAS  Google Scholar 

  14. Warming, S., N. Costantino, D. L. Court, N. A. Jenkins, and N. G. Copeland (2005) Simple and highly efficient BAC recombineering using galK selection. Nucleic Acids Res. 33: e36.

    Article  Google Scholar 

  15. Suster, M. L., G. Abe, A. Schouw, and K. Kawakami (2011) Transposon-mediated BAC transgenesis in zebrafish. Nat. Protoc. 6: 1998–2021.

    Article  CAS  Google Scholar 

  16. Balasubramanian, S., Y. Rajendra, L. Baldi, D. L. Hacker, and F. M. Wurm (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol. Bioeng. 113: 1234–1243.

    Article  CAS  Google Scholar 

  17. Sharan, S. K., L. C. Thomason, S. G. Kuznetsov, and D. L. Court (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat. Protoc. 4: 206–223.

    Article  CAS  Google Scholar 

  18. Kung, S. H., A. C. Retchless, J. Y. Kwan, and R. P. P. Almeida (2013) Effects of DNA size on transformation and recombination efficiencies in Xylella fastidiosa. Appl. Environ. Microbiol. 79: 1712–1717.

    Article  CAS  Google Scholar 

  19. Jacobus, A. P. and J. Gross (2015) Optimal cloning of PCR fragments by homologous recombination in Escherichia coli. PLoS One. 10: e0119221.

    Article  Google Scholar 

  20. Lee, P. Y., J. Costumbrado, C. Y. Hsu, and Y. H. Kim (2012) Agarose gel electrophoresis for the separation of DNA fragments. J. Vis. Exp. e3923.

  21. Jahn, M., C. Vorpahl, T. Hübschmann, H. Harms, and S. Müller (2016) Copy number variability of expression plasmids determined by cell sorting and Droplet Digital PCR. Microb. Cell Fact. 15: 211.

    Article  Google Scholar 

  22. Carreira-Rosario, A., S. Scoggin, N. A. Shalaby, N. D. Williams, P. R. Hiesinger, and M. Buszczak (2013) Recombineering homologous recombination constructs in Drosophila. J. Vis. Exp. e50346.

  23. Liu, P., N. A. Jenkins, and N. G. Copeland (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res. 13: 476–484.

    Article  CAS  Google Scholar 

  24. Thomason, L. C., J. A. Sawitzke, X. Li, N. Costantino, and D. L. Court (2014) Recombineering: genetic engineering in bacteria using homologous recombination. Curr. Protoc. Mol. Biol. 106: 1.16.1–1.16.39.

    Article  Google Scholar 

  25. Degryse, E. (1996) In vivo intermolecular recombination in Escherichia coli: application to plasmid constructions. Gene. 170: 45–50.

    Article  CAS  Google Scholar 

  26. Dickinson, D. J., A. M. Pani, J. K. Heppert, C. D. Higgins, and B. Goldstein (2015) Streamlined genome engineering with a self-excising drug selection cassette. Genetics. 200: 1035–1049.

    Article  Google Scholar 

  27. Snounou, G. and A. D. Malcolm (1984) Supercoiling and the mechanism of restriction endonucleases. Eur. J. Biochem. 138: 275–280.

    Article  CAS  Google Scholar 

  28. Asami, J., Y. U. Inoue, Y. W. Terakawa, S. F. Egusa, and T. Inoue (2011) Bacterial artificial chromosomes as analytical basis for gene transcriptional machineries. Transgenic Res. 20: 913–924.

    Article  CAS  Google Scholar 

  29. Trivedi, R. N., P. Akhtar, J. Meade, P. Bartlow, M. M. Ataai, S. A. Khan, and M. M. Domach (2014) High-level production of plasmid DNA by Escherichia coli DH5α ΩsacB by introducing inc mutations. Appl. Environ. Microbiol. 80: 7154–7160.

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2020R1A6A1A0304195411). This research was also supported by Research Assistance Program (2019) in the Incheon National University.

Author information

Authors and Affiliations

Authors

Contributions

MUK, KHW, SO and JTP conceived of and designed the experiments. MUK, YHL, JWK and SYH performed the experiments. MUK, KHW, SO and JTP wrote and edited the paper. All authors have read and approved the manuscript

Corresponding authors

Correspondence to Hyung Wook Kwon, Sekyung Oh or Joon Tae Park.

Ethics declarations

Conflict of Interest The authors declare no competing financial interests.

Ethical Statement Neither ethical approval nor informed consent was required for this study.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuk, M.U., Lee, Y.H., Kim, J.W. et al. Rapid and Efficient BAC Recombineering: Gain & Loss Screening System. Biotechnol Bioproc E 26, 1023–1033 (2021). https://doi.org/10.1007/s12257-020-0382-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0382-1

Keywords

Navigation