Skip to main content
Log in

Improvement of Tol2 Transposon System Enabling Efficient Protein Production in CHO Cells

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Establishment of mammalian cell lines with high protein productivity is an important object in the field of biopharmaceutics. Toward this end, Tol2 transposon-based expression systems have been developed as effective means to facilitate protein productivity. Here, we proposed novel strategies to improve conventional Tol2 transposon systems. The use of Tol2 transposase mRNA as a helper vector improved the efficiency of transgene integration and protein production. Moreover, the use of the Tol2 transposon vector containing the minimum cis-sequences essential for transposition (mini-TP) also served as one of the efficient means to generate recombinant cells that enable higher protein production. Furthermore, mini-TP showed a more beneficial response to DNA methylation inhibitors, suggesting that the use of mini-TP with DNA methylation inhibitors could be used as a means of commercial production. Taken together, our results provide effective strategies to improve the Tol2 transposon-based expression system. These strategies will be applicable to the production of therapeutic proteins and open new avenues in biopharmaceutical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balasubramanian, S., Y. Rajendra, L. Baldi, D. L. Hacker, and F. M. Wurm (2016) Comparison of three transposons for the generation of highly productive recombinant CHO cell pools and cell lines. Biotechnol. Bioeng. 113: 1234–1243.

    Article  CAS  Google Scholar 

  2. Geurts, A. M., Y. Yang, K. J. Clark, G. Liu, Z. Cui, A. J. Dupuy, J. B. Bell, D. A. Largaespada, and P. B. Hackett (2003) Gene transfer into genomes of human cells by the sleeping beauty transposon system. Mol. Ther. 8: 108–117.

    Article  CAS  Google Scholar 

  3. Balciunas, D., K. J. Wangensteen, A. Wilber, J. Bell, A. Geurts, S. Sivasubbu, X. Wang, P. B. Hackett, D. A. Largaespada, R. S. McIvor, and S. C. Ekker (2006) Harnessing a high cargo-capacity transposon for genetic applications in vertebrates. PLoS Genet. 2: e169.

    Article  Google Scholar 

  4. Ding, S., X. Wu, G. Li, M. Han, Y. Zhuang, and T. Xu (2005) Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 122: 473–483.

    Article  CAS  Google Scholar 

  5. Muñoz-López, M. and J. L. García-Pérez (2010) DNA transposons: nature and applications in genomics. Curr. Genomics. 11: 115–128.

    Article  Google Scholar 

  6. Bire, S., D. Ley, S. Casteret, N. Mermod, Y. Bigot, and F. Rouleux-Bonnin (2013) Optimization of the piggyBac transposon using mRNA and insulators: Toward a more reliable gene delivery system. PLoS One. 8: e82559.

    Article  Google Scholar 

  7. Wilber, A., J. L. Frandsen, J. L. Geurts, D. A. Largaespada, P. B. Hackett, and R. S. McIvor (2006) RNA as a source of transposase for sleeping beauty-mediated gene insertion and expression in somatic cells and tissues. Mol. Ther. 13: 625–630.

    Article  CAS  Google Scholar 

  8. Urasaki, A., G. Morvan, and K. Kawakami (2006) Functional dissection of the Tol2 transposable element identified the minimal cis-sequence and a highly repetitive sequence in the subterminal region essential for transposition. Genetics. 174: 639–649.

    Article  CAS  Google Scholar 

  9. Miller, J. L. and P. A. Grant (2013) The role of DNA methylation and histone modifications in transcriptional regulation in humans. Subcell. Biochem. 61: 289–317.

    Article  CAS  Google Scholar 

  10. Feschotte, C. and E. J. Pritham (2007) DNA transposons and the evolution of eukaryotic genomes. Annu. Rev. Genet. 41: 331–368.

    Article  CAS  Google Scholar 

  11. Garrison, B. S., S. R. Yant, J. G. Mikkelsen, and M. A. Kay (2007) Postintegrative gene silencing within the Sleeping Beauty transposition system. Mol. Cell. Biol. 27: 8824–8833.

    Article  CAS  Google Scholar 

  12. Haryadi, R., S. Ho, Y. J. Kok, H. X. Pu, L. Zheng, N. A. Pereira, B. Li, X. Bi, L. T. Goh, Y. Yang, and Z. Song (2015) Optimization of heavy chain and light chain signal peptides for high level expression of therapeutic antibodies in CHO cells. PLoS One. 10: e0116878.

    Article  Google Scholar 

  13. Clarke, C., P. Doolan, N. Barron, P. Meleady, F. O’Sullivan, P. Gammell, M. Melville, M. Leonard, and M. Clynes (2011) Predicting cell-specific productivity from CHO gene expression. J. Biotechnol. 151: 159–165.

    Article  CAS  Google Scholar 

  14. Kawakami, K. (2007) Tol2: a versatile gene transfer vector in vertebrates. Genome Biol. 8: S7.

    Article  Google Scholar 

  15. Clark, K. J., M. D. Urban, K. J. Skuster, and S. C. Ekker (2011) Transgenic zebrafish using transposable elements. Methods Cell Biol. 104: 137–149.

    Article  CAS  Google Scholar 

  16. Hackett, P. B. (2007) Integrating DNA vectors for gene therapy. Mol. Ther. 15: 10–12.

    Article  CAS  Google Scholar 

  17. Tharmalingam, T., H. Barkhordarian, N. Tejeda, K. Daris, S. Yaghmour, P. Yam, F. Lu, C. Goudar, T. Munro, and J. Stevens (2018) Characterization of phenotypic and genotypic diversity in subclones derived from a clonal cell line. Biotechnol. Prog. 34: 613–623.

    Article  Google Scholar 

  18. Yang, F., L. Zhang, J. Li, J. Huang, R. Wen, L. Ma, D. Zhou, and L. Li (2010) Trichostatin A and 5-azacytidine both cause an increase in global histone H4 acetylation and a decrease in global DNA and H3K9 methylation during mitosis in maize. BMC Plant Biol. 10: 178.

    Article  Google Scholar 

  19. Wu, S. C. Y., Y. J. J. Meir, C. J. Coates, A. M. Handler, P. Pelczar, S. Moisyadi, and J. M. Kaminski (2006) piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 103: 15008–15013.

    Article  CAS  Google Scholar 

  20. Ni, J., K. J. Clark, S. C. Fahrenkrug, and S. C. Ekker (2008) Transposon tools hopping in vertebrates. Brief. Funct. Genomics. 7: 444–453.

    Article  CAS  Google Scholar 

  21. Hunter, M., P. Yuan, D. Vavilala, and M. Fox (2019) Optimization of protein expression in mammalian cells. Curr. Protoc. Protein Sci. 95: e77.

    Article  Google Scholar 

  22. Owczarek, B., A. Gerszberg, and K. Hnatuszko-Konka (2019) A brief reminder of systems of production and chromatography-based recovery of recombinant protein biopharmaceuticals. Biomed Res. Int. 2019: 4216060.

    Article  CAS  Google Scholar 

  23. Balasubramanian, S., F. M. Wurm, and D. L. Hacker (2016) Multigene expression in stable CHO cell pools generated with the piggyBac transposon system. Biotechnol. Prog. 32: 1308–1317.

    Article  CAS  Google Scholar 

  24. Narayanavari, S. A., S. S. Chilkunda, Z. Ivics, and Z. Izsvak (2017) Sleeping Beauty transposition: from biology to applications. Crit. Rev. Biochem. Mol. Biol. 52: 18–44.

    Article  CAS  Google Scholar 

  25. Troyanovsky, B., V. Bitko, V. Pastukh, B. Fouty, and V. Solodushko (2016) The functionality of minimal PiggyBac transposons in mammalian cells. Mol. Ther. Nucleic Acids. 5: e369.

    Article  CAS  Google Scholar 

  26. Macdonald, J., L. Taylor, A. Sherman, K. Kawakami, Y. Takahashi, H. M. Sang, and M. J. McGrew (2012) Efficient genetic modification and germ-line transmission of primordial germ cells using piggyBac and Tol2 transposons. Proc. Natl. Acad. Sci. U. S. A. 109: E1466–E1472.

    Article  CAS  Google Scholar 

  27. Xu, D. H., X. Y. Wang, Y. L. Jia, T. Y. Wang, Z. W. Tian, X. Feng, and Y. N. Zhang (2018) SV40 intron, a potent strong intron element that effectively increases transgene expression in transfected Chinese hamster ovary cells. J. Cell. Mol. Med. 22: 2231–2239.

    Article  CAS  Google Scholar 

  28. Lesueur, L. L., L. M. Mir, and F. M. André (2016) Overcoming the specific toxicity of large plasmids electrotransfer in primary cells in vitro. Mol. Ther. Nucleic Acids. 5: e291.

    Article  CAS  Google Scholar 

  29. Gibney, E. R. and C. M. Nolan (2010) Epigenetics and gene expression. Heredity. 105: 4–13.

    Article  CAS  Google Scholar 

  30. Jansz, N. (2019) DNA methylation dynamics at transposable elements in mammals. Essays Biochem. 63: 677–689.

    Article  CAS  Google Scholar 

  31. Iida, A., A. Shimada, A. Shima, N. Takamatsu, H. Hori, K. Takeuchi, and A. Koga (2006) Targeted reduction of the DNA methylation level with 5-azacytidine promotes excision of the medaka fish Tol2 transposable element. Genet. Res. 87: 187–193.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by an Incheon National University research grant (2019–0011).

Author information

Authors and Affiliations

Authors

Contributions

S.Y.H. and J.T.P. conceived of and designed the experiments. S.Y.H. performed the experiments. S.Y.H. and J.T.P. analyzed the data. S.Y.H., S.O. and J.T.P. wrote and edited the paper.

Corresponding authors

Correspondence to Sekyung Oh or Joon Tae Park.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Conflict of Interest

The authors declare no competing financial interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hwang, S.Y., Lee, Y.H., Kuk, M.U. et al. Improvement of Tol2 Transposon System Enabling Efficient Protein Production in CHO Cells. Biotechnol Bioproc E 26, 767–775 (2021). https://doi.org/10.1007/s12257-020-0310-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0310-4

Keywords

Navigation