Skip to main content
Log in

Characterization and Identification of Cellulose-degrading Bacteria Isolated from a Microbial Fuel Cell Reactor

  • Research Paper
  • Applied Microbiology
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Electricity can be directly biogenerated by bacteria in a microbial fuel cell (MFC) using many different biodegradable wastes as substrate. When cellulose is used as a substrate, the cellulolytic and electrogenic activities require a microbial consortium for energy generation. In this study, cellulose-degrading bacteria were isolated from an MFC using CMC (carboxymethylcellulose) agar medium and their cellulolytic activity was assessed. Cellulolytic bacteria isolated from the MFC were characterized and identified based on their phenotypic characteristics and analysis of their 16S rRNA genes sequence. Of thirty-two isolates, only ten cellulolytic bacterial strains were successfully isolated from the MFC reactor under aerobic conditions. The bacterial isolates had a cellulolytic index between 3.63 to 8.96 U mL-1. The bacterial strain SAM3a demonstrated high identity (99% via 16S-rRNA sequencing) to Staphylococcus saprophyticus which showed the highest CMCase activity (8.96) 0.34U mL-1). Enterobacter cancerogenus JCT-55 showed the next highest CMCase activity (8.34 ± 0.56 U mL-1); S. epidermidis BAB-2554 showed the lowest CMCase activity (3.63) 0.05 U mL-1). In the MFC, the genus Staphylococcus was found to be the most dominant group of cellulose-degrading bacteria which used rice straw as a carbon source. In this study, Escherichia coli, S. saprophyticus, Enterobacter cancerogenus, S. epidermidis, S. hominis, Bacillus subtilis, L. murinus, S. haemolyticus, S. epidermidis, and S. epidermidis were found to possess cellulolytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Omer, A. M. (2017) Biomass for power generation: Clean energies for sustainable development and environment. Int. J. Waste Resour. 7: e1000292.

    Google Scholar 

  2. Owusu, P. A. and S. Asumadu-Sarkodie (2016) A review of renewable energy sources, sustainability issues and climate change mitigation. Cogent Eng. 3: 1167990.

    Google Scholar 

  3. Ben-Iwo, J., V. Manovic, and P. Longhurst (2016) Biomass resources and biofuels potential for the production of transportation fuels in Nigeria. Renew. Sust. Energ. Rev. 63: 172–192.

    Article  Google Scholar 

  4. Mazzolia, R. (2012) Development of microorganisms for cellulose-biofuel consolidated bioprocessings: metabolic engineers' tricks. Comput. Struct. Biotechnol. J. 3: e201210007

    Article  Google Scholar 

  5. Saini, J. K., R. Saini, and L. Tewari (2015) Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech. 5: 337–353.

    Google Scholar 

  6. Kumar, A. K. and S. Sharma (2017) Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresour. Bioprocess. 4: 7.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raju, E. V. N., G. Divakar, T. Rajesh, A. Ghazi, and A. Pourgharashi (2013) Screening and isolation of cellulase producing Bacteria from dump yards of vegetable wastes. World J. Pharm. Pharm. Sci. 3: 428–435.

    Google Scholar 

  8. Shankar, T., V. Mariappan, and L. Isaiarasu (2011) Screening cellulolytic bacteria from the mid-gut of the popular composting earthworm, Eudrilus eugeniae (Kinberg). World J. Zool. 6: 142–148.

    Google Scholar 

  9. Haruta, S., S. Kato, Z. Cui, M. Ishii, and Y. Igarashi (2003) Cellulose degrading microbial community. JSP-SNRCT/DOST/ LIPI/VCC Multilateral Cooperative Research Program in the Field of Biotechnology. Bangkok, Thailand.

    Google Scholar 

  10. Singh, R., M. Kumar, A. Mittal, and P. K. Mehta (2016) Microbial enzymes: industrial progress in 21st century. 3 Biotech. 6: 174–189.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Menendez, E., P. Garcia-Fraile, and R. Rivas (2015) Biotechnological applications of bacterial cellulases. AIMS Bioeng 2: 163–182.

    Article  CAS  Google Scholar 

  12. Bai, S., M. R. Kumar, D. M. Kumar, P. Balashanmugam, M. D. B. Kumaran, and P. T. Kalaichelvan (2012) Cellulase production by Bacillus subtilis isolated from cow dung. Arch. Appl. Sci. Res. 4: 269–279.

    CAS  Google Scholar 

  13. Li, X., H. Yang, B. Roy, D. Wang, W. Yue, L. Jiang, E. Y. Park, and Y. Miao (2009) The most stirring technology in future: cellulase enzyme and biomass utilization. Afr J. Biotechnol. 8: 2418–2422.

    CAS  Google Scholar 

  14. Immanuel, G, R. Dhanusa, P. Prema, and A. Palavesam (2006) Effect of different growth parameters on endoglucanase enzyme activity by bacteria isolated from coir retting effluents of estuarine environment. Int. J. Environ. Sci. Technol. 3: 25–34.

    Article  CAS  Google Scholar 

  15. Bhat, M. K. (2000) Cellulases and related enzymes in biotechnology. Biotechnol. Adv. 18: 355–383.

    Article  CAS  PubMed  Google Scholar 

  16. Lee, S. M. and Y. M. Koo (2001) Pilot-scale production of cellulase using Trichoderma reesei Rut C-30 in fed-batch mode. J. Microbiol. Biotechnol. 11: 229–233.

    CAS  Google Scholar 

  17. Flimban, S. G. A., S. H. A. Hassan, M. M. Rahman, and S. E. Oh (2018) The effect of Nafion membrane fouling on the power generation of a microbial fuel cell. Int. J. Hydrogen Energy.

    Google Scholar 

  18. Gobalakrishnan, R and K. Sivakumar (2017) Systematic characterization of potential cellulolytic marine actinobacteria Actinoalloteichus sp. MHA15. Biotechnol. Rep. 13: 30–36.

    Article  Google Scholar 

  19. Imran, M., Z. Anwar, M. Irshad, M. J. Asad, and H. Ashfaq (2016) Cellulase production from species of fungi and bacteria from agricultural wastes and its utilization in industry: a review. Adv Enzyme Res. 4: 44–55.

    Article  CAS  Google Scholar 

  20. Sethi, S., A. Datta, B. L. Gupta, and S. Gupta (2013) Optimization of Cellulase Production from Bacteria Isolated from Soil. ISRN Biotechnol. Article ID 985685.

    Google Scholar 

  21. Baysal, O. and A. Yildiz (2017) Bacillus subtilis: an industrially important microbe for enzymes production. EC Microbiol. 5: 148–156.

    Article  Google Scholar 

  22. Poszytek, K., M. Ciezkowska, A. Sklodowska, and L. Drewniak (2016) Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Front. Microbiol. 7: 324.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pham, C. A., S. J. Jung, N. T. Phung, J. Lee, I. S. Chang, B. H. Kim, H. Yi, and J. Chun (2003) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell. FEMS Microbiol. Lett. 223: 129–134.

    Article  CAS  PubMed  Google Scholar 

  24. Rabaey, K., N. Boon, S. D. Siciliano, M. Verhaege, and W. Verstraete (2004) Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70: 5373–5382.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Xing, D., Y. Zuo, S. Cheng, J. M. Regan, and B. E. Logan (2008) Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42: 4146–4151.

    Article  CAS  PubMed  Google Scholar 

  26. Chaudhuri, S. K. and D. R. Lovley (2003) Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nat. Biotechnol. 21: 1229–1232.

    Article  CAS  PubMed  Google Scholar 

  27. Park, H. S., B. H. Kim, H. S. Kim, H. J. Kim, G. T. Kim, M. Kim, I. S. Chang, Y. K. Park, and H. I. Chang (2001) A novel electrochemically active and Fe(III)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell. Anaerobe 7: 297–306.

    Article  CAS  Google Scholar 

  28. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park (1999) Direct electrode reaction of Fe (III) reducing bacterium, Shewanella putrefaciens. J. Microbiol. Biotechnol. 9: 127–131.

    Google Scholar 

  29. Kim, H. J., H. S. Park, M. S. Hyun, I. S. Chang, M. Kim, and B. H. Kim (2002) A mediator-less microbial fuel cell using a metal reducing bacterium, Shewanella putrefaciens. Enzyme Microb. Technol. 30: 145–152.

    Article  CAS  Google Scholar 

  30. Bond, D. R. and D. R. Lovley (2003) Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69: 1548–1555.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley (2002) Electrode-reducing microorganisms that harvest energy from marine sediment. Science. 295: 483–485.

    Article  CAS  PubMed  Google Scholar 

  32. Holmes, D. E., D. R. Bond, and D. R. Lovley (2004) Electron transfer by Desulfobulbus propionicus to Fe (III) and graphite electrodes. Appl. Environ. Microbiol. 70: 1234–1237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bond, D. R. and D. R. Lovley (2005) Evidence for involvement of an electron shuttle in electricity generation by Geothrix fermentans. Appl. Environ. Microbiol. 71: 2186–2189.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zuo, Y., D. Xing, J. M. Regan, and B. E. Logan (2008) Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Appl. Environ. Microbiol. 74: 3130–3137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ren, Z., T. E. Ward, and J. M. Regan (2007) Electricity production from cellulose in a microbial fuel cell using a defined binary culture. Environ. Sci. Technol. 14: 4781–4786.

    Article  CAS  Google Scholar 

  36. Rezaei, E, T. L. Richard, and B. E. Logan (2008) Enzymatic hydrolysis of cellulose coupled with electricity generation in a microbial fuel cell. Biotechnol. Bioeng. 101: 1163–1169.

    Article  CAS  PubMed  Google Scholar 

  37. Rismani-Yazdi, H., A. D. Christy, B. A. Dehority, M. Morrison, Z. Yu, and O. H. Tuovinen (2007) Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97: 1398–1407.

    Article  CAS  PubMed  Google Scholar 

  38. Oh, S. E., B. Min, and B. E. Logan (2004) Cathode performance as a factor in electricity generation in microbial fuel cells. Environ. Sci. Technol. 38: 4900–4904.

    Article  CAS  PubMed  Google Scholar 

  39. Xia, H., G. Khanal, B. C. Strachan, E. Voros, N. Z. Piety, S. C. Gifford, and S. S. Shevkoplyas (2017) Washing in hypotonic saline reduces the fraction of irreversibly-damaged cells in stored blood: a proof-of-concept study. Blood Transfus. 15: 463–471.

    PubMed  PubMed Central  Google Scholar 

  40. De Ley, J., J. Swings, and F. Gossele (1984) Genus 1. Acetobacter Beijerinck 1898, 215. pp. 268–74. In: N. R. Krieg and J. G. Holt (eds.) Bergey's Manual of Systematic Bacteriology, Vol. 1, (9th ed.) The Williams & Wilkins Co., Baltimore, USA.

    Google Scholar 

  41. Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saitou, N. and M. Nei (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.

    CAS  PubMed  Google Scholar 

  43. Felsenstein, J. (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 39: 783–791.

    Article  PubMed  Google Scholar 

  44. National Committee for Clinical Laboratory Standards (1997). Reference method for broth dilution antifungal susceptibility testing of yeasts, approved standard NCCLS M27-A. National Committee for Clinical Laboratory Standards, Wayne, PA, USA.

    Google Scholar 

  45. Sambrook, J. and D. W. Russell (2001) Molecular Cloning: A Laboratory Manual. 3rd ed., pp. 20–25. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA.

    Google Scholar 

  46. Lu, W. J., H. T. Wang, Y. F. Nie, Z. C. Wang, D. Y. Huang, X. Y. Qiu, and J. C. Chen (2004) Effect of inoculating flower stalks and vegetable waste with ligno-cellulolytic microorganisms on the composting process. J. Environ. Sci. Health. B. 39: 871–887.

    Article  PubMed  Google Scholar 

  47. Lisdiyanti, P., E. Suyanto, N. F. Gusmawati, and W. U. Rahayu (2012) Isolation and characterization of cellulose produced by cellulolytic bacteria from peat soil of Ogan Komering Ilir, South Sumatera. Int. J. Environ. Bioener 3: 145–153.

    CAS  Google Scholar 

  48. Miller, G. L. (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426–428.

    Article  CAS  Google Scholar 

  49. Gupta, P., K. Samant, and A. Sahu (2012) Isolation of cellulose-degrading bacteria and determination of their cellulolytic potential. Int. J. Microbiol. Article ID 578925

    Google Scholar 

  50. SAS Institute Inc. (2011) The SAS 10.2 software. Statistical Analysis System for Windows [Software]. Cary, NC. SAS.

  51. Abd Elrsoul, R. M. M. A. and S. E. A. Bakhiet (2018) Optimization of factors influencing cellulase production by some indigenous isolated fungal species. Jordan J. Biol. Sci. 11: 31–36.

    CAS  Google Scholar 

  52. Sheng, P., S. Huang, Q. Wang, A. Wang, and H. Zhang (2012) Isolation, screening, and optimization of the fermentation conditions of highly cellulolytic bacteria from the hindgut of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). Appl. Biochem. Biotechnol. 167: 270–284.

    Article  CAS  PubMed  Google Scholar 

  53. Woo, S. L., M. Ruocco, F. Vinale, M. Nigro, R. Marra, N. Lombardi, A. Pascale, S. Lanzuise, G. Manganiello, and M. Lorito (2014) Trichoderma-based products and their widespread use in agriculture. Open Mycol. J. 8: 71–126.

    Article  Google Scholar 

  54. Rezaei, E., D. Xing, R. Wagner, J. M. Regan, T. L. Richard, and B. E. Logan (2009) Simultaneous Cellulose Degradation and Electricity Production by Enterobacter cloacae in a microbial fuel cell. Appl. Environ. Microbiol. 75: 3673–3678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sami, A. J., M. Awais, and A. R. Shakoori (2008) Preliminary studies on the production of endo-1,4-P-D-glucanases activity produced by Enterobacter cloacae. Afr. J. Biotechnol. 7: 1318–1322.

    Google Scholar 

  56. Lokapirnasari, W. P., D. S. Nazar, T. Nurhajati, K. Supranianondo, and A. B. Yulianto (2015) Production and assay of cellulolytic enzyme activity of Enterobacter cloacae WPL 214 isolated from bovine rumen fluid waste of Surabaya abbatoir, Indonesia. Vet. World. 8: 367–371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Khianngam, S., Y. Pootaeng-on, T. Techakriengkrai, and S. Tanasupawat (2014) Screening and identification of cellulase producing bacteria isolated from oil palm meal. J. Appl. Pharm. Sci. 4: 90–96.

    CAS  Google Scholar 

  58. Hussein, K. A. and J. H. Joo (2013) Heavy metal resistance of bacteria and its impact on the production of antioxidant enzymes. Afr. J. Microbiol. Res. 7: 2288–2296.

    Article  Google Scholar 

  59. Thomas, L., H. Ram, and V. P. Singh (2018) Inducible cellulase production from an organic solvent tolerant Bacillus sp. SV1 and evolutionary divergence of endoglucanase in different species of the genus Bacillus. Braz. J. Microbiol. 49: 429–442.

    Article  CAS  PubMed  Google Scholar 

  60. Kopecky, J., M. Nesvorna, M., Mareckova-Sagova, and J. Hubert (2014) The effect of antibiotics on associated bacterial community of stored product mites. PLoS One 9: ell2919

    Article  CAS  Google Scholar 

  61. Lundgren, J. G and R. M. Lehman (2010) Bacterial gut symbionts contribute to seed digestion in an omnivorous beetle. PLoS One 5: el0831.

    Article  CAS  Google Scholar 

  62. Stewart, C. S. and S. H. Duncan (1985) The effect of avoparcin on cellulolytic bacteria of the ovine rumen. J. Gen. Microbiol. 131:427–435.

    CAS  Google Scholar 

  63. Szegi, J. and H. G. El-Din (1977) Sensitivity of cellulolytic bacteria to antibiotics. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg 132: 388–391.

    CAS  PubMed  Google Scholar 

  64. Turutoglu, H., S. Ercelik, and D. Ozturk (2006) Antibiotic resistance of Staphylococcus aureus and coagulase-negative staphylococci isolated from Bovine Mastitis. Bull. Vet. Inst. Pulawy 50: 41–45.

    Google Scholar 

  65. Narasimha, G, A. Sridevi, B. Viswanath, M. S. Chandra, and R. B. Rajasekhar (2006) Nutrient effects on production of cellulolytic enzymes by Aspergillus niger. Afr. J. Biotechnol. 5: 472–476.

    CAS  Google Scholar 

  66. Poorna, C. A. and P. Prema (2007) Production of cellulase-free endoxylanase from novel alkalophilic thermotolerant Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour Technol. 98: 485–490.

    Article  CAS  Google Scholar 

  67. Niranjane, A. P., P. Madhou, and T. W. Stevenson (2007) The effect of carbohydrate carbon sources on the production of cellulase by Phlebia gigantea. Enzyme Microb. Technol. 40: 1464–1468.

    Article  CAS  Google Scholar 

  68. Sreeja, S. J, P. W. J. Malar, F. R S. Joseph, T. Steffi, G. Immanuel, and A. Palavesam (2013) Optimization of cellulase production by Bacillus altitudinis APS MSU and Bacillus licheniformis APS2 MSU, gut isolates of fish Etroplus suratensis. IJOART. 2: 401–406.

    Google Scholar 

  69. Kuhad, R. C., R. Gupta, and A. Singh (2011) Microbial cellulases and their industrial applications. Enzyme Res. Article ID 280696.

    Google Scholar 

  70. Chen, H. (2014) Biotechnology of Lignocellulose: Theory and Practice. 1st ed., p. 510. Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

    Book  Google Scholar 

  71. El-Naggar, N. E., S. Deraz, and A. Khalil (2014) Bioethanol production from lignocellulosic feedstocks based on enzymatic hydrolysis: current status and recent developments. Biotechnology. 13: 1–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out with the support of “Cooperative Research Program for Agriculture Science & Technology Development (Project No. PJ010848)” Rural Development Administration, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid A. Hussein.

Additional information

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flimban, S., Oh, SE., Joo, J.H. et al. Characterization and Identification of Cellulose-degrading Bacteria Isolated from a Microbial Fuel Cell Reactor. Biotechnol Bioproc E 24, 622–631 (2019). https://doi.org/10.1007/s12257-019-0089-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-019-0089-3

Keywords

Navigation