Skip to main content
Log in

Resistance and Proteomic Response of Microalgae to Ionizing Irradiation

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microalgae have been drawing much attention as a platform for food supplements and biofuel production. Advance molecular tools are not available for manipulating microalgae, and therefore, methods for strain improvement mostly depend on random mutation. Radiation is frequently used mutagen in plant as well as microalgae breeding methods. In this study, the resistance of 7 microalgae species to ionizing irradiation was measured. To monitor the growth of microalgae, optical density and staining methods were used. Based on the D10 values, the dose required to reduce one log cycle of the cell population, Chlorella protothecoides, Zygnema circumcarinatum, and Spirogyra varians were shown to be highly resistant to ionizing radiation. The changes in protein expression levels in S. varians were further investigated. Using 2-dimensional electrophoresis and protein identification, it was shown that some proteins involved in energy and glyceride metabolisms were up-regulated. These results provide fundamental insights into metabolic changes that occur in a microalga species upon exposure to ionizing irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Dang, N. M. and K. Lee (2018) Utilization of organic liquid fertilizer in microalgae cultivation for biodiesel production. Biotechnol. Bioproc. Eng. 23: 405–414.

    Article  CAS  Google Scholar 

  2. Hong, S. J., Y. S. Park, M. A. Han, Z. H, Kim, B. K. Cho, H. Lee, H. K. Choi, and C. G. Lee (2017) Enhanced production of fatty acids in three strains of microalgae using a combination of nitrogen starvation and chemical inhibitors of carbohydrate synthesis. Biotechnol. Bioproc. Eng. 22: 60–67.

    Article  CAS  Google Scholar 

  3. Ahloowalia, B. S. and M. Maluszynski (2001) Induced mutations–A new paradigm in plant breeding. Euphytica 118: 167–173.

    Article  CAS  Google Scholar 

  4. Holzinger. A. and C. Lütz (2006) Algae and UV irradiation: Effects on ultrastructure and related metabolic functions. Micron 37: 190–207.

    Article  PubMed  Google Scholar 

  5. Rastogi R. P., R. P. Sinha, S. H. Moh, T. K. Lee, S. Kottuparambil, Y. J. Kim, J. S. Rhee, E. M. Choi, M. T. Brown, D. P. Häder, and T. Han (2014) Ultraviolet radiation and cyanobacteria. J. Photoch. Photobio. B 141:154–69.

    Article  CAS  Google Scholar 

  6. Garcia, M. M., B. W. Brooks, R. B. Stewart, W. Dion, J. R. Trudel, and T. Ouwerkerk (1987) Evaluation of gamma radiation levels for reducing pathogenic bacteria and fungi in animal sewage and laboratory effluents. Can. J. Vet. Res. 51: 285–289.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Berberoglu, H., P. S. Gomez, and L. Pilon (2009) Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. Used for CO2 fixation and biofuel production. J. Quant. Spectrosc. Ra. 110: 1879–1893.

    Article  CAS  Google Scholar 

  8. Rotman, B. and B.W. Papermaster (1996) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. P. Natl. Acad. Sci. USA 55: 134–141.

    Article  Google Scholar 

  9. Choi, J., M. Yoon, S. Lim, G. H. Kim, and H. Park (2015) Effect of gamma irradiation on physiological and proteomic changes of Arctic Zygnema sp. (Chlorophyta, Zygnematales). Phycologia 54: 333–341.

    Article  CAS  Google Scholar 

  10. Yoon, M., J. Choi, G. H. Kim, D. H. Kim, and D. H. Park (2013) Proteomic analysis of Spirogyra varians mutant with high starch content and growth rate induced by gamma irradiation. Bioproc. Biosyst. Eng. 36: 757–763.

    Article  CAS  Google Scholar 

  11. Joe, M. H., J. Y. Kim, S. Lim, D. H. Kim, S. Bai S., H. Park, S. G. Lee, S. J. Han, and J. Choi (2015) Microalgal lipid production using the hydrolysates of rice straw pretreated with gamma irradiation and alkali solution. Biotechnol. Biofuels 8: 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi, J., M. Yoon, M. Joe, H. Park, S. G. Lee, S. J. Han, and P. C. Lee (2014) Development of microalga Scenedesmus dimorphus mutant with higher lipid content by radiation breeding. Bioproc. Biosyst. Eng. 37: 2437–2444.

    Article  CAS  Google Scholar 

  13. Baek, J., J. Choi, H. Park, S. Lim, and S. J. Park (2016) Isolation and proteomic analysis of a Chlamydomonas reinhardtii mutant with enhanced lipid production by the gamma irradiation method. J. Microbiol. Biotechnol. 26: 2076–2085.

    Article  CAS  Google Scholar 

  14. Wu, H., J. V. Volponi, A. E. Oliver, A. N. Parikh, B. A. Simmons, and S. Singh (2011) P. Natl. Acad. Sci. USA 108: 3809–3814.

    Article  Google Scholar 

  15. Fischer, M. and R. G. Sawers (2013) A universally applicable and rapid method for measuring the growth of streptomyces and other filamentous microorganisms by methylene blue adsorptiondesorption. Appl. Environ. Microb. 79: 4499–4502.

    Article  CAS  Google Scholar 

  16. Rotman, B. and B. W. Papermaster (1966) Membrane properties of living mammalian cells as studied by enzymatic hydrolysis of fluorogenic esters. P. Natl. Acad. Sci. USA 55: 134–141.

    Article  CAS  Google Scholar 

  17. Herburger, H. and A. Holzinger (2015) Localization and quantification of callose in the streptophyte green algae Zygnema and Klebsormidium: Correlation with desiccation tolerance. Plant and Cell Physiology 56: 2259–2270.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Germ, M., I. Kreft, and A. Gaberscik (2009) UV–B radiation and selenium affected energy availability in green alga Zygnema. Biologia 64: 676–679.

    Article  CAS  Google Scholar 

  19. Huss, V. A., C. Ciniglia, P. Cennamo, S. Cozzolino, G. Pinto, and A. Pollio (2002) Phylogenetic relationships and taxonomic position of Chlorella–like isolates from low pH environments (pH < 3.0). BMC Evol. Biol. 2:13.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Slade, D. and M. Radman (2011) Oxidative Stress Resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. R. 75: 133–191.

    Article  CAS  Google Scholar 

  21. Singh H. (2018) Desiccation and radiation stress tolerance in cyanobacteria. J. Basic Microb. 58: 813–826.

    Article  CAS  Google Scholar 

  22. Yoon, M., H. Y. Yang, S. S. Lee, D. H. Kim, G. H. Kim, and J. Choi (2013) Characterization of gamma radiation inducible thioredoxin h from Spirogyra varians. Enzyme Microb. Tech. 53: 136–142.

    Article  CAS  Google Scholar 

  23. Ciereszko, I., H. Johansson, V. Hurry, and L. A. Kleczkowski (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP–glucose pyrophosphorylase in wild–type and pho mutants of Arabidopsis. Planta 212: 598–605.

    Article  CAS  PubMed  Google Scholar 

  24. Wang, S. B., F. Chen, and M. Sommerfeld (2004) Proteomic analysis of molecular response to oxidative stress by the green alga Haematococcus pluvialis (Chlorophyceae). Planta 220: 17–29.

    Article  CAS  PubMed  Google Scholar 

  25. Hasunuma, K., N. Yabe, Y. Yoshida, Y. Ogura, and T. Hamada (2003) Putative functions of nucleoside diphosphate kinase in plants and fungi. J. Bioenerg. Biomembr. 35:57–65.

    Article  CAS  PubMed  Google Scholar 

  26. Wei, S. J., C. S. Trempus, R. C. Ali, L. A. Hansen, and R. W. Tennant (2004) 12–O–tetradecanoylphorbol–13–acetate and UV radiationinduced nucleoside diphosphate protein kinase B mediates neoplastic transformation of epidermal cells. J. Biol. Chem. 279: 5993–6004.

    CAS  Google Scholar 

  27. Yasunobu, O., Y. Yoshida, N. Yabe, and K. Hasunuma (2001) A point mutation in nucleoside diphosphate kinase results in a deficient light response for perithecial polarity in Neurospora crassa. J. Biol. Chem. 276: 21228–21234.

    Article  Google Scholar 

  28. Blomberg A. and L. Adler (1989) Roles of glycerol and glycerol–3–phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171: 1087–1092.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wu, L., J. Wu, Y. Liu, X. Gong, J. Xu, D. Lin, and Y. Dong (2016) The rice pentatricopeptide repeat gene TCD10 is needed for chloroplast development under cold stress. Rice 9: 67.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-il Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, EJ., Choi, Ji. Resistance and Proteomic Response of Microalgae to Ionizing Irradiation. Biotechnol Bioproc E 23, 704–709 (2018). https://doi.org/10.1007/s12257-018-0468-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-018-0468-1

Keywords

Navigation