Skip to main content
Log in

Deletion of the carboxyl terminal of thioredoxin reductase C of Arabidopsis facilitates oligomerization

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The hydrophobicity of NADPH-thioredoxin reductase C (AtNTRC) of Arabidopsis was determined at the carboxyl terminal based on a Kyte-Dolittle hydropathy plot. A carboxyl-terminal deletion mutant of AtNTRC was made in this study to determine whether such deletion could affect the structure and function of AtNTRC. The mutant protein with 14 amino acids deleted at the carboxyl terminus (designated as AtNTRCΔC14) was purified. It was found that AtNTRCΔC14 protein had higher hydrophobicity compared to AtNTRC. Such increase in hydrophobicity of AtNTRCΔC14 affected its native structure and functions. In addition, AtNTRCΔC14 had higher number of high oligomeric complexes compared to AtNTRC based on native-gel electrophoresis and size exclusion chromatography. Although the chaperone activity of AtNTRCΔC14 was enhanced, its NADPH-dependent reductase activity was lower compared to AtNTRC. Therefore, the hydrophobicity of the thioredoxin domain of AtNTRC is important for forming high molecular weight complexes and for maintaining functional balance between chaperone activity and thioredoxin reductase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alkhalfioui, F., M. Renard, and F. Montrichard (2007) Unique properties of NADP-thioredoxin reductase C in legumes. J. Exp. Bot. 58: 969–978.

    Article  CAS  Google Scholar 

  2. Pascual, M. B., A. Mata-Cabana, F. J. Florencio, M. Lindahl, and F. J. Cejudo (2011) A comparative analysis of the NADPH thioredoxin reductase C-2-Cys peroxiredoxin system from plants and cyanobacteria. Plant Physiol. 155: 1806–1816.

    Article  CAS  Google Scholar 

  3. Perez-Ruiz, J. M., M. C. Spinola, K. Kirchsteiger, J. Moreno, M. Sahrawy, and F. J. Cejudo (2006) Rice NTRC is a high-efficiency redox system for chloroplast protection against oxidative damage. Plant Cell 18: 2356–2368.

    Article  CAS  Google Scholar 

  4. Serrato, A. J., J. M. Perez-Ruiz, M. C. Spinola, and F. J. Cejudo (2004) A novel NADPH thioredoxin reductase, localized in the chloroplast, which deficiency causes hypersensitivity to abiotic stress in Arabidopsis thaliana. J. Biol. Chem. 279: 43821–43827.

    Article  CAS  Google Scholar 

  5. Wulff, R. P., J. Lundqvist, G. Rutsdottir, A. Hansson, A. Stenbaek, D. Elmlund, H. Elmlund, P. E. Jensen, and M. Hansson (2011) The activity of barley NADPH-dependent thioredoxin reductase C is independent of the oligomeric state of the protein: Tetrameric structure determined by cryo-electron microscopy. Biochem. 50: 3713–3723.

    Article  CAS  Google Scholar 

  6. Moon, J. C., H. H. Jang, H. B. Chae, J. R. Lee, S. Y. Lee, Y. J. Jung, M. R. Shin, H. S. Lim, W. S. Chung, D. J. Yun, K. O. Lee, and S. Y. Lee (2006) The C-type Arabidopsis thioredoxin reductase ANTR-C acts as an electron donor to 2-Cys peroxiredoxins in chloroplasts. Biochem. Biophys. Res. Commun. 348: 478–484.

    Article  CAS  Google Scholar 

  7. Chae, H. B., J. C. Moon, M. R. Shin, Y. H. Chi, Y. J. Jung, S. Y. Lee, G. M. Nawkar, H. S. Jung, J. K. Hyun, W. Y. Kim, C. H. Kang, D. J. Yun, K. O. Lee, and S. Y. Lee (2013) Thioredoxin reductase type C (NTRC) orchestrates enhanced thermotolerance to Arabidopsis by its redox-dependent holdase chaperone function. Mol. Plant 6: 323–336.

    Article  CAS  Google Scholar 

  8. Moon, J. C., S. Lee, S. Y. Shin, H. B. Chae, Y. J. Jung, H. S. Jung, K. O. Lee, J. R. Lee, and S. Y. Lee (2015) Overexpression of Arabidopsis NADPH-dependent thioredoxin reductase C (AtNTRC) confers freezing and cold shock tolerance to plants. Biochem. Biophys. Res. Commun. 463: 1225–1229.

    Article  CAS  Google Scholar 

  9. Lee, Y., S. Kim, P. Lazar, J. C. Moon, S. Hwang, S. Thangapandian, Y. Shon, K. O. Lee, S. Y. Lee, and K. W. Lee (2012) Comparative molecular modeling study of Arabidopsis NADPHdependent thioredoxin reductase and its hybrid protein. PLoS One 7: e46279.

    Article  CAS  Google Scholar 

  10. Moon, J. C., Y. S. Hah, W. Y. Kim, B. G. Jung, H. H. Jang, J. R. Lee, S. Y. Kim, Y. M. Lee, M. G. Jeon, C. W. Kim, M. J. Cho, and S. Y. Lee (2005) Oxidative stress-dependent structural and functional switching of a human 2-Cys peroxiredoxin isotype II that enhances HeLa cell resistance to H2O2-induced cell death. J. Biol. Chem. 280: 28775–28784.

    Article  CAS  Google Scholar 

  11. Juretic, D., D. Zucic, B. Lucic, and N. Trinajstic (1998) Preference functions for prediction of membrane-buried helices in integral membrane proteins. Comput. Chem. 22: 279–294.

    Article  CAS  Google Scholar 

  12. Sharma, K. K., H. Kaur, G. S. Kumar, and K. Kester (1998) Interaction of 1,1'-bi(4-anilino)naphthalene-5,5'-disulfonic acid with alpha-crystallin. J. Biol. Chem. 273: 8965–8970.

    Article  CAS  Google Scholar 

  13. Cheong, N. E., Y. O. Choi, K. O. Lee, W. Y. Kim, B. G. Jung, Y. H. Chi, J. S. Jeong, K. Kim, M. J. Cho, and S. Y. Lee (1999) Molecular cloning, expression, and functional characterization of a 2Cys-peroxiredoxin in Chinese cabbage. Plant Mol. Biol. 40: 825–834.

    Article  CAS  Google Scholar 

  14. Jang, H. H., K. O. Lee, Y. H. Chi, B. G. Jung, S. K. Park, J. H. Park, J. R. Lee, S. S. Lee, J. C. Moon, J. W. Yun, Y. O. Choi, W. Y. Kim, J. S. Kang, G. W. Cheong, D. J. Yun, S. G. Rhee, M. J. Cho, and S. Y. Lee (2004) Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function. Cell 117: 625–635.

    Article  CAS  Google Scholar 

  15. Lee, J. R., S. S. Lee, H. H. Jang, Y. M. Lee, J. H. Park, S. C. Park, J. C. Moon, S. K. Park, S. Y. Kim, S. Y. Lee, H. B. Chae, Y. J. Jung, W. Y. Kim, M. R. Shin, G. W. Cheong, M. G. Kim, K. R. Kang, K. O. Lee, D. J. Yun, and S. Y. Lee (2009) Heat-shock dependent oligomeric status alters the function of a plant-specific thioredoxin-like protein, AtTDX. Proc. Natl. Acad. Sci. 106: 5978–5983.

    Article  CAS  Google Scholar 

  16. Das, K. P., and W. K. Surewicz (1995) Temperature-induced exposure of hydrophobic surfaces and its effect on the chaperone activity of alpha-crystallin. FEBS Lett. 369: 321–325.

    Article  CAS  Google Scholar 

  17. Kumar, M. S., M. Kapoor, S. Sinha, and G. B. Reddy (2005) Insights into hydrophobicity and the chaperone-like function of alphaA-and alphaB-crystallins: an isothermal titration calorimetric study. J. Biol. Chem. 280: 21726–21730.

    Article  CAS  Google Scholar 

  18. Butko, P., M. Cournoyer, M. Pusztai-Carey, and W. K. Surewicz (1994) Membrane interactions and surface hydrophobicity of Bacillus thuringiensis delta-endotoxin CryIC. FEBS Lett. 340: 89–92.

    Article  CAS  Google Scholar 

  19. Horowitz, P. M., S. Hua, and D. L. Gibbons (1995) Hydrophobic surfaces that are hidden in chaperonin Cpn60 can be exposed by formation of assembly-competent monomers or by ionic perturbation of the oligomer. J. Biol. Chem. 270: 1535–1542.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang Yeol Lee or Jung Ro Lee.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.C., Park, SC., Shin, S.Y. et al. Deletion of the carboxyl terminal of thioredoxin reductase C of Arabidopsis facilitates oligomerization. Biotechnol Bioproc E 21, 641–645 (2016). https://doi.org/10.1007/s12257-016-0390-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0390-3

Keywords

Navigation