Skip to main content
Log in

Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Bacillus megaterium strain MNSH1-9K-1, isolated from a high-metal content site in Guanajuato, Mexico, has the intrinsic capacity to remove vanadium (V) and nickel (Ni) from a petrochemical spent catalyst, and counteract the toxic effects produced in the cell due to the presence of oxidative stress. Since knowledge of the molecular components involved in the microbial resistance to spent catalysts is scarce, this study aimed to identify the proteins potentially involved in the enhanced resistance of a B. megaterium strain, during the removal of metals contained in a spent catalyst. Thus, the current research uses a proteomic approach to investigate and evidence the differences in the molecular resistance mechanisms of two B. megaterium strains, one isolated from a mining site and a wild type strain, when both are exposed to a spent catalyst. In addition, we studied their ability to eliminate nickel (Ni), vanadium (V), aluminum (Al) and molybdenum (Mo). The data presented here may contribute to the knowledge of the molecular mechanisms involved in the resistance of B. megaterium to high metal content wastes, as well as its potential utilization for the recovery of valuable industrial metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Furimsky, E. (1996) Spent refinery catalysts: Environmental, safety and utilization. Catal. Today 30: 223–286.

    Article  CAS  Google Scholar 

  2. Torres-Martínez, L. M., B. I. Kharisov, and N. Elizondo (2001) Recuperación de V y Mo de catalizadores gastados de la industria petroquímica: Parte I. In: Ciencia UANL (eds.) Vol. IV. Principios y método de recuperación. México.

    Google Scholar 

  3. Rojas-Rodríguez, A. D., O. Flores-Fajardo, F. S. Alcántar-González, N. N. López-Castillo, and M. J. Cruz-Gómez (2012) Chemical treatment to recover Molybdenum and Vanadium from spent heavy gasoil hydrodesulfurization catalyst. Adv. Chem. Eng. Sci. 2: 408–412.

    Article  CAS  Google Scholar 

  4. Case, A. G. and E. Wiewiorowski (1995) Ten years of catalyst recycling: A step to the future. 3rd International Symposium on Recycling of Metals and Engineered Materials. November 12-15. Point Clear, AL, USA.

    Google Scholar 

  5. Akcil, A., F. Vegliò, F. Ferella, M. D. Okudana, and A. Tuncuk (2015) A review of metal recovery from spent petroleum catalysts and ash. Waste Manage. 45: 420–433.

    Article  CAS  Google Scholar 

  6. Rajkumar, M., Y. Ma, and H. Freitas (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J. Environ. Manage. 128: 973–980.

    Article  CAS  Google Scholar 

  7. Chien, M., R. Nakahata, T. Ono, K. Miyauchi, and G. Endo (2012) Mercury removal and recovery by immobilized Bacillus megaterium MB1. Front. Chem. Sci. Eng. 6: 192–197.

    Article  CAS  Google Scholar 

  8. Gómez-Ramírez, M., L. A. Montero-Álvarez, A. Tobón-Avilés, and N. G. Rojas-Avelizapa (2012) Potential application of Ni and V-tolerant microorganisms for the recovery of metals contained in spent catalysts (Spanish). Proceedings of the First Congress in Biotechnology Innovation. October 18-20. Mazatlan, Sin., Mexico.

    Google Scholar 

  9. Gómez-Ramírez, M., Y. A. Flores-Martínez, L. J. López-Hernández, and N. G. Rojas Avelizapa (2014) Effect of Fe2+ concentration on microbial removal of Ni and V from spent catalyst. JCBPS Sect. B. 4: 101–109.

    Google Scholar 

  10. Gómez-Ramírez, M., L. García-Martínez, G. Fierros-Romero, and N. G. Rojas-Avelizapa (2014) Evaluation and identification of microorganisms able to remove Ni and V from hydroprocessing spent catalyst. Proceedings in Biohydrometallurgy. June 9-11. Falmouth, Cornwall, UK.

    Google Scholar 

  11. Fierros-Romero, G., M. Gómez-Ramírez, G. E. Arenas-Isaac, R. C. Pless, and N. G. Rojas-Avelizapa (2016) Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal. Can. J. Microbiol. 62: 505–513.

    Article  CAS  Google Scholar 

  12. Fierros-Romero, G., A. Rivas-Castillo, M. Gómez-Ramírez, R. Pless, and N. G. Rojas-Avelizapa (2016) Expression analysis of Ni-and V-associated resistance genes in a Bacillus megaterium strain isolated from a mining site. Curr. Microbiol. 73: 165–171.

    Article  CAS  Google Scholar 

  13. Kashmiri, Z. N. and S. A. Mankar (2014) Free radicals and oxidative stress in bacteria. Int. J. Curr. Microbiol. App. Sci. 3: 34–40.

    CAS  Google Scholar 

  14. Stohs, S. and D. Bagchi (1995) Oxidative mechanisms in the toxicity of metal ions. Free Radic. Biol. Med. 18: 321–336.

    Article  CAS  Google Scholar 

  15. Geslina, C., J. Llanos, D. Prieura, and C. Jeanthona (2001) The manganese and iron superoxide dismutases protect Escherichia coli from heavy metal toxicity. Res. Microbiol. 152: 901–905.

    Article  Google Scholar 

  16. Helmann, J. D., M. F. W. Wu, A. Gaballa, P. A. Kobel, M. M. Morshedi, and P. Fawcett (2003) The global transcriptional response of Bacillus subtilis to peroxide stress is coordinated by three transcription factors. J. Bacteriol. 185: 243–253.

    Article  CAS  Google Scholar 

  17. Mafi Gholami, R., S. Mehdi Borghei, and S. Mohammad Mousavi (2011) Bacterial leaching of a spent Mo–Co–Ni refinery catalyst using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. Hydrometall. 106: 26–31.

    Article  CAS  Google Scholar 

  18. Kim, D. J., D. Mishra, K. H. Park, J. G. Ahn, and D. E. Ralph (2008) Metal leaching from spent petroleum catalyst by acidophilic bacteria in presence of pyrite. Mater. Trans. 49: 2383–2388.

    Article  CAS  Google Scholar 

  19. Syed, S. and P. Chinthala (2015) Heavy metal detoxification by different Bacillus species isolated from solar salterns. Scientifica 2015: 1–8.

    Article  Google Scholar 

  20. Arenas-Isaac, G., M. Gómez-Ramírez, L. Montero-Álvarez, A. Tobón-Avilés, G. Fierros-Romero, and N. G. Rojas-Avelizapa (2016) Novel microorganisms for the treatment of Ni and V of spent catalysts. Ind. J. Biotechnol. In Press.

    Google Scholar 

  21. Miller, J. H. (1972) Molecular biology of free radical scavenging systems. p. 466. In: J. H. Miller (ed.). Cold Spring Harbor Laboratory, NY, USA.

  22. Kermanshahi, R. K., A. Ghazifard, and A. Tavakoli (2014) Identification of bacteria resistant to heavy metals in the soils of Isfahan Province. Iran. J. Sci. Technol. Trans. A Sci. 31: 7–16.

    Google Scholar 

  23. Nicholson, W. L. and P. Setlow (1990) Sporulation, germination, and outgrowth. In: C. R. Harwood and S. M. Cutting (eds.). Molecular biological methods for Bacillus. pp. 391–450. J. Wiley and Sons, Chichester, UK.

    Google Scholar 

  24. Kott, L., E. H. Braswell, A. L. Shrout, and R. M. Weis (2004) Distributed subunit interactions in CheA contribute to dimer stability: A sedimentation equilibrium study. BBA-Proteins Proteom. 1696: 131–140.

    Article  CAS  Google Scholar 

  25. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685.

    Article  CAS  Google Scholar 

  26. Shevchenko, A., H. Tomas, J. Havlis, J. V. Olsen, and M. Mann (2006) In gel digestion for mass spectrometric characterization of proteins and proteomes. Nat. Protoc. 1: 2856–2860.

    Article  CAS  Google Scholar 

  27. Avelar, T. C., G. I. P. Garrido, A. Chagoya-López, L. G. de la Vara, N. L. D. Buenrostro, and Y. I. Chirino-López (2016) Cardiolipin deficiency causes a dissociation of the b6c: caa3 megacomplex in B. subtilis membranes. J. Bioenerg. Biomembr. 48: 451–467.

    Article  CAS  Google Scholar 

  28. Lino, B., M. T. Carrillo-Rayas, A. Chagolla, and L. E. González de la Vara (2006) Purification and characterization of a calciumdependent protein kinase from beetroot plasma membranes. Planta 225: 255–268.

    Article  CAS  Google Scholar 

  29. Velusamy, P., Y. M. Awad, S. A. M. Abd El-Azeem, and Y. S. Ok (2011) Screening of heavy metal resistant bacteria isolated from hydrocarbon contaminated soil in Korea. J. Agri. Life Environ. Sci. 23: 40–43.

    Google Scholar 

  30. Rajkumar, M., Y. Ma, and H. Freitas (2013) Improvement of Ni phytostabilization by inoculation of Ni resistant Bacillus megaterium SR28C. J. Environ. Manage. 128: 973–980.

    Article  CAS  Google Scholar 

  31. Cheung, K. H. and J. D. Gu (2005) Chromate reduction by Bacillus megaterium TKW3 isolated from marine sediments. World J. Microbiol. Biotechnol. 21: 213–219.

    Article  CAS  Google Scholar 

  32. Ma, H., R. Liu, Z. Zhao, Z. Zhang, Y. Cao, and Y. Ma (2016) A novel peptide from soybean protein isolate significantly enhances resistance of the organism under oxidative stress. PLoS One 11: 1–15.

    Google Scholar 

  33. Amoozegar, M. A., J. Hamedi, M. Dadashipour, and S. Shariatpanahi (2005) Effect of salinity on the tolerance to toxic metals and oxyanions in native moderately halophilic sporeforming bacilli. World J. Microbiol. Biotechnol. 21: 1237–1243

    Article  CAS  Google Scholar 

  34. Teitzel, G. M. and M. R. Parsek (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl. Environ. Microbiol. 69: 2313-2120.

  35. Chubukov, V. and U. Sauer (2014) Environmental dependence of stationary-phase metabolism in Bacillus subtilis and Escherichia coli. Appl. Environ. Microbiol. 80: 2901–2909.

    Article  CAS  Google Scholar 

  36. Maddalena, L. L., H. Niederholtmeyer, M. Turtola, Z. N. Swank, G. A. Belogurov, and S. J. Maerk (2016) GreA and GreB enhance expression of Escherichia coli RNA polymerase promoters in a reconstituted transcription-translation system. ACS Synth. Biol. 5: 929–935.

    Article  CAS  Google Scholar 

  37. Reyes-Jara, A., M. Latorre, G. López, A. Bourgogne, B. E. Murray, V. Cambiazo, and M. González (2010) Genome-wide transcriptome analysis of the adaptive response of Enterococcus faecalis to copper exposure. Biometals 23: 1105–1112.

    Article  CAS  Google Scholar 

  38. Len, A. C., D. W. Harty, and N. A. Jacques (2004) Stressresponsive proteins are upregulated in Streptococcus mutans during acid tolerance. Microbiol. 150: 1339–1351.

    Article  CAS  Google Scholar 

  39. Wei, W., J. Jiang, X. Li, L. Wang, and S. S. Yang (2004) Isolation of salt-sensitive mutants from Sinorhizobium meliloti and characterization of genes involved in salt tolerance. Lett. Appl. Microbiol. 39: 278–283.

    Article  CAS  Google Scholar 

  40. Nogales, J., R. Campos, H. BenAbdelkhalek, J. Olivares, C. Lluch, and J. Sanjuan (2002) Rhizobium tropici genes involved in free-living salt tolerance are required for the establishment of efficient nitrogen-fixing symbiosis with Phaseolus vulgaris. Mol. Plant-Microbe Interact. 15: 225–232.

    Article  CAS  Google Scholar 

  41. Kawamoto, J., T. Kurihara, M. Kitagawa, I. Kato, and N. Esaki (2007) Proteomic studies of an antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins. Extremophil. 11: 819–826.

    Article  CAS  Google Scholar 

  42. Li, J., C. C Overall, R. C. Johnson, M. B. Jones, J. E. McDermott, and F. Heffron (2015) ChIP-Seq analysis of the sE Regulon of Salmonella enterica serovar typhimurium reveals new genes implicated in heat sShock and oxidative stress response. PLoS One 10: 1–41.

    Google Scholar 

  43. Orlova, M., J. Newlands, A. Das, A. Goldfarb, and S. Borukhov (1995) Intrinsic transcript cleavage activity of RNA polymerase. Proc. Natl. Acad. Sci. USA. 92: 4596–4600.

    Article  CAS  Google Scholar 

  44. Li, K., K. Jiang, B. Yu, L. Wang, C. Gao, C. Ma, P. Xu, and Y. Ma (2012) Transcription elongation factor GreA has functional chaperone activity. PLoS One 7: e47521.

    Article  CAS  Google Scholar 

  45. Areekit, S., P. Kanjanavas, P. Khawsak, A. Pakpitchareon, K. Potivejkul, G. Chansiri, and K. Chansiri (2011) Cloning, expression, and characterization of thermotolerant manganese superoxide dismutase from Bacillus sp. MHS47. Int. J. Mol. Sci. 12: 844–856.

    Article  CAS  Google Scholar 

  46. Yadav, G., P. K. Srivastava, P. Parihar, S. Tiwari, and S. M. Prasad (2016) Oxygen toxicity and antioxidative responses in arsenic stressed Helianthus annuus L. seedlings against UV-B. J. Photochem. Photobiol. B. 165: 58–70.

    Article  CAS  Google Scholar 

  47. Yoo, D. Y., D. W. Kim, J. Y. Chung, H. Y. Jung, J. W. Kim, and Y. S. Yoon, (2016) Cu, Zn-Superoxide dismutase increases the therapeutic potential of adipose-derived mesenchymal stem cells by maintaining antioxidant enzyme levels. Neurochem. Res. 41: 3300–3307.

    Article  CAS  Google Scholar 

  48. Touati, D. (1992) Molecular biology of free radical scavenging systems. pp. 231–261. In: J. G. Scandalios (ed.). Cold Spring Harbor Laboratory, NY, USA.

  49. Privalle, C.T. and I. Fridovich (1987) Induction of superoxide dismutase in Escherichia coli by heat shock. Proc. Natl. Acad. Sci. USA. 84: 2723–2726.

    Article  CAS  Google Scholar 

  50. Bernhardt, J., U. Völker, A. Völker, H. Antelmann, R. Schmid, and H. Mach (1997) Specific and general stress proteins in Bacillus subtilis–a two-dimensional protein electrophoresis study. Microbiol. 143: 999–1017.

    Article  CAS  Google Scholar 

  51. Eickhoff, J., E. Potts, J. Valtos, and E. C. Niederhoffer (1995) Heavy metal effects on Proteus mirabilis superoxide dismutase production. FEMS Microbiol. Lett. 132: 271–276.

    Article  CAS  Google Scholar 

  52. Fridovich, I. (1978) The biology of oxygen radicals. Nature 201: 875–880.

    CAS  Google Scholar 

  53. Wang, H., R. Xu, L. You, and G. Zhong (2013) Characterization of Cu-tolerant bacteria and definition of their role in promotion of growth, Cu accumulation and reduction of Cu toxicity in Triticum aestivum L. Ecotoxicol. Environ. Saf. 94: 1–7.

    Article  CAS  Google Scholar 

  54. Topal, A., M. Atamanalp, E. Oruç, and H. S. Erol (2017) Physiological and biochemical effects of nickel on rainbow trout (Oncorhynchus mykiss) tissues: Assessment of nuclear factor kappa B activation, oxidative stress and histopathological changes. Chemosphere 166: 445–452.

    Article  CAS  Google Scholar 

  55. Tu, W. Y., S. Pohl, P. Summpunn, S. Hering, S. Kerstan, and C. R. Harwood (2012) Comparative analysis of the responses of related pathogenic and environmental bacteria to oxidative stress. Microbiol. 158: 636–647.

    Article  CAS  Google Scholar 

  56. Pandey, S., P. K. Barai, and T. K. Maiti (2013) Influence of heavy metals on the activity of antioxidant enzymes in the metal resistant strains of Ochrobactrum and Bacillus sp. J. Environ. Biol. 34: 1033–1037.

    CAS  Google Scholar 

  57. Paul, S., C. Aggarwal, J. K. Thakur, G. S. Bandeppa, M. A. Khan, and L. M. Pearson (2015) Induction of osmoadaptive mechanisms and modulation of cellular physiology help Bacillus licheniformis strain SSA 61 adapt to salt stress. Curr. Microbiol. 70: 610–617.

    Article  CAS  Google Scholar 

  58. Behera, M., J. Dandapat, and C. C. Rath (2014) Effect of heavy metals on growth response and antioxidantdefense protection in Bacillus cereus. J. Basic Microbiol. 54: 1201–1209.

    Article  CAS  Google Scholar 

  59. Xie, Z., X. Sun, Y. Wang, Y. Luo, X. Xie, and C. Su (2014) Response of growth and superoxide dismutase to enhanced arsenic in two Bacillus species. Ecotoxicol. 23: 1922–1929.

    Article  CAS  Google Scholar 

  60. Song C., L. Hebin, S. Liangquan, and Z. Xiaobo (2015) Characterization of the interaction between superoxide dismutase and 2-oxoisovalerate dehydrogenase. Gene 568: 1–7.

    Article  CAS  Google Scholar 

  61. Fonseca, P., R. Moreno, and F. Rojo (2013) Pseudomonas putida growing at low temperature shows increased levels of CrcZ and CrcY sRNAs, leading to reduced Crc-dependent catabolite repression. Environ. Microbiol. 15: 24–35.

    Article  CAS  Google Scholar 

  62. Kim, S. H., S. K. Kim, K. H. Jung, Y. K. Kim, H. C. Hwang, and S. G. Ryu (2013) Proteomic analysis of the oxidative stress response induced by low-dose hydrogen peroxide in Bacillus anthracis. J. Microbiol. Biotechnol. 23: 750–758.

    Article  CAS  Google Scholar 

  63. Gyan, S., Y. Shiohira, I. Sato, M. Takeuchi, and T. Sato (2006) Regulatory loop between redox sensing of the NADH/NAD ratio by Rex (YdiH) and oxidation of NADH by NADH dehydrogenase Ndh in Bacillus subtilis. J. Bacteriol. 188: 7062–7071.

    Article  CAS  Google Scholar 

  64. Mailloux, R. J. and V. D. Appanna (2007) Aluminum toxicity triggers the nuclear translocation of HIF-1a and promotes anaerobiosis in hepatocytes. Toxicol. In Vitro 21: 16–24.

    Article  CAS  Google Scholar 

  65. Ryan, A., E. Kaplan, J. C. Nebel, E. Polycarpou, V. Crescente, and E. Lowe (2014) Identification of NAD(P)H quinone oxidoreductase activity in azoreductases from P. aeruginosa: Azoreductases and NAD(P)H quinone oxidoreductases belong to the same FMN-dependent superfamily of enzymes. PLoS One 9: e98551.

    Article  CAS  Google Scholar 

  66. Ito, K., M. Nakanishi, W. C. Lee, H. Sasaki, S. Zenno, and K. Saigo (2005) Crystallization and preliminary X-ray analysis of AzoR ( azoreductase ) from Escherichia coli. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 61(Pt 4): 399–402.

    Article  CAS  Google Scholar 

  67. Smith, M. T. (1999) Benzene, NQO1, and genetic susceptibility to cancer. Proc. Natl. Acad. Sci. USA. 96: 7624–7626.

    Article  CAS  Google Scholar 

  68. Lightfoot, R. T., D. Shuman, and H. Ischiropoulos (2000) Oxygen-insensitive nitroreductases of Escherichia coli do not reduce 3-nitrotyrosine. Free Rad. Biol. Med. 28: 1132–1136.

    Article  CAS  Google Scholar 

  69. Bang, S. Y., J. H. Kim, P. Y. Lee, K. H. Bae, J. S. Lee, and P. S. Kim (2012) Confirmation of Frm2 as a novel nitroreductase in Saccharomyces cerevisiae. Biochem. Biophys. Res. Commun. 423: 638–641.

    Article  CAS  Google Scholar 

  70. Hassan, H. M. and I. Fridovich (1978) Superoxide radical and the oxygen enhancement of the toxicity of paraquat in Escherichia coli. J. Biol. Chem. 253: 8143–8148.

    CAS  Google Scholar 

  71. Pomposiello, P. J. and B. Demple (2000) Identification of SoxSregulated genes in Salmonella enterica serovar Typhimurium. J. Bacteriol. 182: 23–29.

    Article  CAS  Google Scholar 

  72. de Oliveira, I. M., A. Zanotto-Filho, J. C. Moreira, D. Bonatto, and J. A. Henriques (2010) The role of two putative nitroreductases, Frm2p and Hbn1p, in the oxidative stress response in Saccharomyces cerevisiae. Yeast 27: 89–102.

    Google Scholar 

  73. Takeda, K., M. Lizuka, T. Watanabe, J. Nakagawa, S. Kawasaki, and Y. Nimura (2006) Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. FEBS Lett. 274: 1318–1327.

    Article  CAS  Google Scholar 

  74. Roldán, M. D., E. Pérez-Reinado, F. Castillo, and C. Moreno-Vivián (2008) Reduction of polynitroaromatic compounds: the bacterial nitroreductases. FEMS Microbiol. Rev. 32: 474–500.

    Article  CAS  Google Scholar 

  75. Qi, F., R. K. Pradhan, R. K. Dash, and D. A. Beard (2011) Detailed kinetics and regulation of mammalian 2-oxoglutarate dehydrogenase. BMC Biochem. 12: 53.

    Article  CAS  Google Scholar 

  76. Sokatch, J. R. and G. Burns (1984) Oxidation of glycine by Pseudomonas putida requires a specific lipoamide dehydrogenase. Arch. Biochem. Biophys. 228: 660–666.

    Article  CAS  Google Scholar 

  77. Delaney, R., G. Burns, and J. R. Sokatch (1984) Relationship of lipoamide dehydrogenases from Pseudomonas putida to other FAD-linked dehydrogenases. FEBS Lett. 168: 265–270.

    Article  CAS  Google Scholar 

  78. Palmer, J. A., K. Hatter, and J. R. Sokatch (1991) Cloning and sequence analysis of the LPD-glc structural gene of Pseudomonas putida. J. Bacteriol. 173: 3109–3116.

    Article  CAS  Google Scholar 

  79. Mishra, S., A. Mishra, P. S. Chauhan, S. K. Mishra, M. Kumari, and A. Niranjan (2012) Pseudomonas putida NBRIC19 dihydrolipoamide succinyltransferase (SucB) gene controls degradation of toxic allelochemicals produced by Parthenium hysterophorus. J. Appl. Microbiol. 112: 793–808.

    Article  CAS  Google Scholar 

  80. Saint-Ruf, C., F. Taddei, and I. Matic (2004) Stress and survival of aging Escherichia coli rpoS colonies. Genetics 168: 541–546.

    Article  CAS  Google Scholar 

  81. Hengge-Aronis, R. (2002) Signal transduction and regulatory mechanisms involved in control of the S (RpoS) subunit of RNA Polymerase. Microbiol. Mol. Biol. Rev. 66: 373–395.

    Article  CAS  Google Scholar 

  82. Scharf, C., S. Riethdorf, H. Ernst, S. Engelmann, U. Völker, and M. Hecker (1998) Thioredoxin is an essential protein induced by multiple stresses in Bacillus subtilis. J. Bacteriol. 180: 1869–1877.

    CAS  Google Scholar 

  83. McGee, D. J., J. Zabaleta, R. J. Viator, T. L. Testerman, A. C. Ochoa, and G. L. Mendez (2004) Purification and characterization of Helicobacter pylori arginase, RocF: Unique features among the arginase superfamily. Eur. J. Biochem. 271: 1952–1962.

    Article  CAS  Google Scholar 

  84. Collet, J. F. and J. Messens (2010) Structure, function, and mechanism of thioredoxin proteins. Antioxid. Redox Signal. 13: 1205–1216.

    Article  CAS  Google Scholar 

  85. Alcolea, P. J., A. Alonso, F. García-Tabares, M. C. Mena, S. Ciordia, and V. Larraga (2016) Increased abundance of proteins involved in resistance to oxidative and nitrosative stress at the last stages of growth and development of Leishmania amazonensis promastigotes revealed by proteome analysis. PLoS One 24: e0164344.

    Article  CAS  Google Scholar 

  86. Weaver, J., T. J. Kang, K. W. Raines, G. L. Cao, S. Hibbs, and P. Tsai (2007) Protective role of Bacillus anthracis exosporium in macrophage-mediated killing by nitric oxide. Infect. Immun. 75: 3894–3901.

    Article  CAS  Google Scholar 

  87. Liang, J., Y. Bai, Y. Men, and J. Qu (2016) Microbe–microbe interactions trigger Mn(II)-oxidizing gene expression. ISME J. 11: 67–77.

    Article  CAS  Google Scholar 

  88. Anantharaman, V., L. M. Iyer, and L. Aravind (2012) Terdependent stress response systems: novel pathways related to metal sensing, production of a nucleoside-like metabolite, and DNA-processing. Mol. BioSyst. 8: 3142–3165.

    Article  CAS  Google Scholar 

  89. Marchler-Bauer, A., M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, and L. Y. Geer (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res. 43: D222–226.

    Article  CAS  Google Scholar 

  90. Caicedo, M., J. J. Jacobs, A. Reddy, and N. J. Hallab (2008) Analysis of metal ion-induced DNA damage, apoptosis,and necrosis in human (Jurkat) T-cells demonstrates Ni2+ and V3+ are more toxic than other metals: Al3+,Be2+,Co2+,Cr3+,Cu2+,Fe3+, Mo5+,Nb5+,Zr2+. J. Biomed. Mater. Res. A. 86: 905–913.

    Article  CAS  Google Scholar 

  91. Amer, A. M. (2002) Processing of Egyptian boiler-ash for extraction of vanadium and nickel. Waste Manag. 22: 515–520.

    Article  CAS  Google Scholar 

  92. Macombera, L. and R. P. Hausingera (2011) Mechanisms of nickel toxicity in microorganisms. Metallomics 3: 1153–1162.

    Article  CAS  Google Scholar 

  93. Hecker, M., J. Pané-Farré, and U. Völker (2007) SigB-dependent general stress response in Bacillus subtilis and related gram-positive bacteria. Annu. Rev. Microbiol. 61: 215–236.

    Article  CAS  Google Scholar 

  94. Bruins, M. R., S. Kapil, and F. W. Oehme (2000) Microbial resistance to metals in the environment. Ecotoxicol. Environ. Saf. 45: 198–207.

    Article  CAS  Google Scholar 

  95. Alzahrani, O. M. and N. Thoufeek Ahamed (2015) Isolation and characterization of heavy metal resistant Bacillus subtilis spp. collected from water sources of Taif Province of Saudi Arabia. Int.J. Curr. Microbiol. Appl. Sci 4: 350–357.

    Google Scholar 

  96. Cabiscol, E., J. Tamarit, and J. Ros (2000) Oxidative stress in bacteria and protein damage by reactive oxygen species. Int. Microbiol. 3: 3–8.

    CAS  Google Scholar 

  97. Simpson, J. A., K. H. Cheeseman, S. E. Smith, and R. T. Dean (1988) Free-radical generation by copper ions and hydrogen peroxide. Biochem. J. 254: 519–523.

    Article  CAS  Google Scholar 

  98. Eppinger, M., B. Bunk, M. A. Johns, J. N. Edirisinghe, K. K. Kutumbaka, and S. S. Koenig (2011) Genome sequences of the biotechnologically important Bacillus megaterium strains QMB1551 and DSM319. J. Bacteriol. 193: 4199–4213.

    Article  CAS  Google Scholar 

  99. Liu, L., Y. Li, J. Zhang, W. Zou, Z. Zhou, and J. Liu (2011) Complete genome sequence of the industrial strain Bacillus megaterium WSH-002. J. Bacteriol. 193: 6389–6390.

    Article  CAS  Google Scholar 

  100. Capasso, C., F. Nazzaro, F. Marulli, A. Capasso, F. La Cara, and E. Parisi (1996) Identification of a high-molecular-weight cadmium binding protein in copper-resistant Bacillus acidocaldarius cells. Res. Microbiol. 147: 287–296.

    Article  CAS  Google Scholar 

  101. Shilev, S., M. Naydenov, M. Sancho-Prieto, N. Vassilev, and E. D. Sancho (2012) PGPR as Inoculants in management of lands contaminated with trace elements. In: Maheshwari, D. K. (ed.). Bacteria in Agrobiology: Stress management book. pp. 259–277. Springer-Verlag, Heidelberg, Germany.

    Chapter  Google Scholar 

  102. Hassan, H. M. (1989) Microbial superoxide dismutases. Adv. Genet. 26: 65–97.

    CAS  Google Scholar 

  103. Youn, H. D., E. J. Kim, J. H. Roe, Y. C. Hah, and S. O. Kang (1996) A novel nickel-containing superoxide dismutase from Streptomyces spp. Biochem. J. 318: 889–896.

    Article  CAS  Google Scholar 

  104. Aguirre, J. D. and V. C. Culotta (2012) Battles with iron: Manganese in oxidative stress protection. J. Biol. Chem. 287: 13541–13548.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norma G. Rojas-Avelizapa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivas-Castillo, A., Orona-Tamayo, D., Gómez-Ramírez, M. et al. Diverse molecular resistance mechanisms of Bacillus megaterium during metal removal present in a spent catalyst. Biotechnol Bioproc E 22, 296–307 (2017). https://doi.org/10.1007/s12257-016-0019-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-016-0019-6

Keywords

Navigation