Skip to main content
Log in

Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

We have previously reported in vivo biosynthesis of polyhydroxyalkanoates containing 2-hydroxyacid monomers such as lactate and 2-hydroxybutyrate in recombinant Escherichia coli strains by the expression of evolved Clostridium propionicum propionyl-CoA transferase (PctCp) and Pseudomonas sp. MBEL 6-19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1 Ps6-19). Here, we report the biosynthesis of poly(2-hydroxybutyrate-co-lactate)[P(2HB-co-LA)] by direct fermentation of metabolically engineered E. coli strain. Among E. coli strains WL3110, XL1-Blue, and BL21(DE3), recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 produced P(76.4mol%2HB-co-23.6mol%LA) to the highest content of 88 wt% when it was cultured in a chemically defined medium containing 20 g/L of glucose and 2 g/L of sodium 2-hydroxybutyrate. When recombinant E. coli XL1-Blue strain expressing PhaC1437 and Pct540 was cultured in a chemically defined medium containing 20 g/L of glucose and varying concentration of sodium 2-hydroxybutyrate, 2HB monomer fraction in P(2HB-co-LA) increased proportional to the concentration of sodium 2-hydroxybutyrate added to the culture medium. P(2HB-co-LA)] could also be produced from glucose as a sole carbon source without sodium 2-hydroxybutyrate into the culture medium. Recombinant E. coli XL1-Blue strain expressing the phaC1437, pct540, cimA3.7, and leuBCD genes together with the L. lactis Il1403 panE gene, successfully produced P(23.5mol%2HB-co-76.5mol%LA)] to the polymer content of 19.4 wt% when it cultured in a chemically defined medium containing 20 g/L of glucose. The metabolic engineering strategy reported here should be useful for the production of novel copolymer P(2HB-co-LA)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Oh, Y. H., I. Y. Eom, J. C. Joo, J. H. Yu, B. K. Song, S. H. Lee, S. H. Hong, and S. J. Park (2015) Recent advances in development of biomass pretreatment technologies used in biorefinery for the production of bio-based fuels, chemicals and polymers. Korean J. Chem. Eng. 32: 1945–1959.

    Article  CAS  Google Scholar 

  2. Lee, S. Y. (1996) Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 49: 1–14.

    Article  CAS  Google Scholar 

  3. Madison, L. L. and G. W. Huisman (1999) Metabolic engineering of poly(3-hydroxyalkanoates): From DNA to plastic. Microbiol. Mol. Biol. Rev. 63: 21–53.

    CAS  Google Scholar 

  4. Steinbüchel, A. and H. E. Valentin (1995) Diversity of bacterial polyhydroxyalkanoic acids. FEMS Microbiol. Lett. 128: 219–228.

    Article  Google Scholar 

  5. Yang, T. H., T. W. Kim, H. O. Kang, S. H. Lee, E. J. Lee, S. C. Lim, S. O. Oh, A. J. Song, S. J. Park, and S. Y. Lee (2010) Biosynthesis of polylactic acid and its copolymers using evolved propionate CoA transferase and PHA synthase. Biotechnol. Bioeng. 105: 150–160.

    Article  CAS  Google Scholar 

  6. Yuan, W., Y. Jia, J. Tian, K. D. Snell, U. Muh, A. J. Sinskey, R. H. Lambalot, C. T. Walsh, and J. Stubbe (2001) Class I and III polyhydroxyalkanoate synthases from Ralstonia eutropha and Allochromatium vinosum: Characterization and substrate specificity studies. Arch. Biochem. Biophys. 394: 87–98.

    Article  CAS  Google Scholar 

  7. Zhang, S., M. Kamachi, Y. Takagi, R. W. Lenz, and S. Goodwin (2001) Comparative study of the relationship between monomer structure and reactivity for two polyhydroxyalkanoate synthases. Appl. Microbiol. Biotechnol. 56: 131–136.

    Article  CAS  Google Scholar 

  8. Yang, T. H., Y. K. Jung, H. O. Kang, T. W. Kim, S. J. Park, and S. Y. Lee (2011) Tailor-made type II Pseudomonas PHA synthases and their use for the biosynthesis of polylactic acid and its copolymer in recombinant Escherichia coli. Appl. Microbiol. Biotechnol. 90: 603–614.

    Article  CAS  Google Scholar 

  9. Yang, J. E., S. Y. Choi, J. H. Shin, S. J. Park, and S. Y. Lee (2013) Microbial production of lactate-containing polyesters. Microb. Biotechnol. 6: 621–636.

    CAS  Google Scholar 

  10. Park, S. J., T. W. Lee, S. C. Lim, T. W. Kim, H. Lee, M. K. Kim, S. H. Lee, B. K. Song, and S. Y. Lee (2012) Biosynthesis of polyhydroxyalkanoates containing 2-hydroxybutyrate from unrelated carbon source by metabolically engineered Escherichia coli. Appl. Microbiol. Biotech. 93: 273–283.

    Article  Google Scholar 

  11. Park, S. J., S. Y. Lee, T. W. Kim, Y. K. Jung, and T. H. Yang (2012) Biosynthesis of lactate containing polyesters by metabolically engineered bacteria. Biotechnol. J. 7: 199–212.

    Article  CAS  Google Scholar 

  12. Park, S. J., T. W. Kim, M. K. Kim, S. Y. Lee, and S. C. Lim (2012) Advanced bacterial polyhydroxyalkanoates: Towards a versatile and sustainable platform for unnatural tailor-made polyesters. Biotechnol. Adv. 30: 1196–1206.

    Article  CAS  Google Scholar 

  13. Park, S. J., Y. A. Jang, H. Lee, A. R. Park, J. E. Yang, J. Shin, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013) Metabolic engineering of Ralstonia eutropha for the biosynthesis of 2-hydroxyacid-containing polyhydroxyalkanoates. Metab. Eng. 20: 20–28.

    Article  CAS  Google Scholar 

  14. Park, S. J., K. H. Kang, H. Lee, A. R. Park, J. E. Yang, Y. H. Oh, B. K. Song, J. Jegal, S. H. Lee, and S. Y. Lee (2013 Propionyl-CoA dependent biosynthesis of 2-hydroxybutyrate containing polyhydroxyalkanoates in metabolically engineered Escherichia coli. J. Biotechnol. 165: 93–98.

    Article  CAS  Google Scholar 

  15. Park, S. J., Y. A. Jang, W. Noh, Y. H. Oh, H. Lee, Y. David, M.G. Baylon, J. Shin, J. E. Yang, S. Y. Choi, S. H. Lee, and S. Y. Lee (2014) Metabolic engineering of Ralstonia eutropha for the production of polyhydroxyalkanoates from sucrose. Biotechnol. Bioeng. 112: 638–643.

    Article  Google Scholar 

  16. Jung, Y. K., T. Y. Kim, S. J. Park, and S. Y. Lee (2010) Metabolic engineering of Escherichia coli for the production of polylactic acid and its copolymers. Biotechnol. Bioeng. 105: 161–171.

    Article  CAS  Google Scholar 

  17. Taguchi, S., M. Yamada, K. Matsumoto, K. Tajima, Y. Satoh, M. Munekata, K. Ohno, K. Kohda, T. Shimamura, H. Kambe, and S. Obata (2008) A microbial factory for lactate-based polyesters using a lactate-polymerizing enzyme. Proc. Natl. Acad. Sci. USA. 105: 17323–17327.

    Article  CAS  Google Scholar 

  18. Ochi, A., K. Matsumoto, T. Ooba, K. Sakai, T. Tsuge, and S. Taguchi (2013) Engineering of class I lactate-polymerizing polyhydroxyalkanoate synthases from Ralstonia eutropha that synthesize lactate-based polyester with a block nature. Appl. Microbiol. Biotechnol. 97: 3441–3447.

    Article  CAS  Google Scholar 

  19. Matsumoto, K, S. Terai, A. Ishiyama, J. Sun, T. Kabe, Y. Song, J. M. Nduko, T. Iwata, and S. Taguchi (2013) One-pot microbial production, mechanical properties, and enzymatic degradation of isotactic P[(R)-2-hydroxybutyrate] and Its Copolymer with (R)-Lactate. Biomacromol. 14: 1913–1918.

    Article  CAS  Google Scholar 

  20. Park, J. H., K. H. Lee, T. Y. Kim, and S. Y. Lee (2007) Metabolic engineering of Escherichia coli for the production of L-valine based on transcriptome analysis and in silico gene knockout simulation. Proc. Natl. Acad. Sci. USA. 104: 7797–7802.

    Article  CAS  Google Scholar 

  21. Braunegg, G., B. Sonnleitner, and R. M. Lafferty (1978) A rapid gas chromatographic method for the determination of poly-ß-hydroxybutyric acid in microbial biomass. Eur. J. Appl. Microbiol. Biotechnol. 6: 29–37.

    Article  CAS  Google Scholar 

  22. Choi, J. and S. Y. Lee (1999) Efficient and economical recovery of Poly(3-hydroxybutylate) from recombinant Escherichia coli by simple digestion with chemicals. Biotechnol. Bioeng. 62: 546–553.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Jae Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, C.G., Kim, Y.J., Lee, S.J. et al. Biosynthesis of poly(2-hydroxybutyrate-co-lactate) in metabolically engineered Escherichia coli . Biotechnol Bioproc E 21, 169–174 (2016). https://doi.org/10.1007/s12257-015-0749-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0749-x

Keywords

Navigation