Skip to main content
Log in

Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

95.3% of the sucrose in a feed batch fermentation (300 g/L) was hydrolyzed by Leuconostoc mesenteroides subp. mesenteroides NRRL B-23188 glucansucrase. Further, the glucose of sucrose formed glucooligosaccharides (GOS) of degree of polymerization (DP) over 2, together with 91.6% of the maltose (200 g/L). Lime saccharate (lime sucrate) was used to control the pH during fermentation. The GOS products had DP between 2 and 7. When Streptococcus mutans mutansucrase (0.1 U/mL) reacted with 0.1% sucrose, addition of 0.1 ~ 10% GOS to the mutansucrase reaction digest resulted in a 56 ~ 90% reduction of mutan formation. GOS also reduced E. coli (72.2%) and Salmonella sp. (over 40.0%) growth, when 2.5% GOS was used as a single carbon source, compared to growth using glucose. The calculated glycemic index and glycemic load of GOS was 8 and 1, respectively, based on a 10 g carbohydrate serving. GOS was calculated to have 2.43 kcal/g. After a glucose tolerance test was performed using C57BL/6 mice, we found that mice treated with GOS showed a 59.4% lower increase in plasma glucose than those treated with maltose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nguyen, T. T. H., Y. S. Seo, J. Y. Cho, S. Lee, G. J. Kim, J. W. Yoon, S. H. Ahn, K. H. Hwang, J. S. Park, T. S. Jang, and D. Kim (2015) Synthesis of oligosaccharide-containing orange juice using glucansucrase. Biotechnol. Bioproc. Eng. 20: 447–452.

    Article  CAS  Google Scholar 

  2. Oku, T. (1996) Oligosaccharides with beneficial health effects: A Japanese perspective. Nutr. Rev. 54: S59–66.

    Article  CAS  Google Scholar 

  3. Manning, T. S. and G. R. Gibson (2004) Microbial-gut interactions in health and disease. Prebiotics. Best Pract. Res. Clin. Gastroenterol. 18: 287–298.

    Article  Google Scholar 

  4. Monchois, V., R. M. Willemot, and P. Monsan (1999) Glucansucrases: Mechanism of action and structure–function relationships. FEMS Microbiol. Rev. 23: 131–151.

    Article  CAS  Google Scholar 

  5. Ngo, D. N., M. M. Kim, and S. K. Kim (2008) Chitin oligosaccharides inhibit oxidative stress in live cells. Carbohyd. Polym. 74: 228–234.

    Article  CAS  Google Scholar 

  6. Marionneau, S., A. Cailleau-Thomas, J. Rocher, B. Le Moullac-Vaidye, N. Ruvoen, M. Clement, and J. Le Pendu (2001) ABH and Lewis histo-blood group antigens, a model for the meaning of oligosaccharide diversity in the face of a changing world. Biochimie 83: 565–573.

    Article  CAS  Google Scholar 

  7. Kang, H. K., T. T. H. Nguyen, H. N. Jeong, M. E. Park, and D. Kim (2014) Molecular cloning and characterization of a novel glucansucrase from Leuconostoc mesenteroides subsp. mesenteroides LM34. Biotechnol. Bioproc. Eng. 19: 605–612.

    Article  CAS  Google Scholar 

  8. Robyt, J. F. and T. F. Walseth (1978) The mechanism of acceptor reactions of Leuconostoc mesenteroides B-512F dextransucrase. Carbohyd. Res. 61: 433–445.

    Article  CAS  Google Scholar 

  9. Cote, G. L. and T. D. Leathers (2005) A method for surveying and classifying Leuconostoc spp. glucansucrases according to strain-dependent acceptor product patterns. J. Ind. Microbiol. Biotechnol. 32: 53–60.

    Article  CAS  Google Scholar 

  10. Holt, S. M., C. M. Miller-Fosmore, and G. L. Cote (2005) Growth of various intestinal bacteria on alternansucrase-derived oligosaccharides. Lett. Appl. Microbiol. 40: 385–390.

    Article  CAS  Google Scholar 

  11. Moon, Y. H., L. Madsen, C.-H. Chung, D. Kim, and D. F. Day (2014) Lime application for the efficient production of nutraceutical glucooligosaccharides from Leuconostoc mesenteroides NRRL B-742 (ATCC13146). J. Ind. Microbiol. Biotechnol. 42: 279–285.

    Article  Google Scholar 

  12. Yoon, S.-H., R. Mukerjea, and J. F. Robyt (2003) Specificity of yeast (Saccharomyces cerevisiae) in removing carbohydrates by fermentation. Carbohyd. Res. 338: 1127–1132.

    Article  CAS  Google Scholar 

  13. Moore, R., G. Richards, and A. Story (2008) Electrical conductivity as an indicator of water chemistry and hydrologic process. Stream. Water. Manag. Bull. 11: 25–29.

    Google Scholar 

  14. Nguyen, T. T., J. Y. Cho, Y. S. Seo, H. J. Woo, H. K. Kim, G. J. Kim, D. Y. Jhon, and D. Kim (2014) Production of a low calorie mandarin juice by enzymatic conversion of constituent sugars to oligosaccharides and prevention of insoluble glucan formation. Biotechnol. Lett. 37: 711–716.

    Article  Google Scholar 

  15. Kang, H. K., A. Kimura, and D. Kim (2011) Bioengineering of Leuconostoc mesenteroides glucansucrases that gives selected bond formation for glucan synthesis and/or acceptor-product synthesis. J. Agr. Food Chem. 59: 4148–4155.

    Article  CAS  Google Scholar 

  16. Ziar, H., P. Gérard, and A. Riazi (2014) Effect of prebiotic carbohydrates on growth, bile survival and cholesterol uptake abilities of dairy-related bacteria. J. Sci. Food Agr. 94: 1184–1190.

    Article  CAS  Google Scholar 

  17. Menezes, E. W., F. Grande, E. B. Giuntini, T. V. Lopes, M. C. Dan, S. B. Prado, B. D. Franco, U. R. Charrondière, and F. M. Lajolo (2015) Impact of dietary fiber energy on the calculation of food total energy value in the Brazilian Food Composition Database. Food Chem. 193: 128–133

    Article  Google Scholar 

  18. U.S Food and Drug Administration, Submission of manuscript. http://FDA.gov

  19. da Silva, I. M., M. C. Rabelo, and S. Rodrigues (2014) Cashew juice containing prebiotic oligosaccharides. J. Food Sci. Technol. 51: 2078–2084.

    Article  Google Scholar 

  20. Chung, C.-H. (2002) A potential nutraceutical from Leuconostoc mesenteroides B-742 (ATCC 13146); Production and Properties. Ph. D. Thesis. University of Lousiana, LA, USA.

    Google Scholar 

  21. Patel, S., D. Kothari, and A. Goyal (2011) Purification and characterization of an extracellular dextransucrase from Pediococcus pentosaceus isolated from the soil of North East India. Food Technol. Biotech. 49: 297–303.

    CAS  Google Scholar 

  22. Seo, E. S., D. Kim, J. F. Robyt, D. F. Day, D. W. Kim, H. J. Park, and H. J. Park (2004) Modified oligosaccharides as potential dental plaque control materials. Biotechnol. Prog. 20: 1550–1554.

    Article  CAS  Google Scholar 

  23. Chung, C. and D. Day (2002) Glucooligosaccharides from Leuconostoc mesenteroides B-742 (ATCC 13146): A potential prebiotic. J. Ind. Microbiol. Biotechnol. 29: 196–199.

    Article  CAS  Google Scholar 

  24. Mullie, P., A. Koechlin, M. Boniol, P. Autier, and P. Boyle (2015) Relation between breast cancer and high glycemic index or glycemic load: A meta-analysis of prospective cohort studies. Crit. Rev. Food Sci. Nutr. 56: 152–159.

    Article  Google Scholar 

  25. Wang, S., J. Wang, H. Mou, B. Luo, and X. Jiang (2015) Inhibition of Adhesion of Intestinal Pathogens (Escherichia coli, Vibrio cholerae, Campylobacter jejuni, and Salmonella Typhimurium) by Common Oligosaccharides. Foodborne Pathog. Dis. 12: 360–365.

    Article  CAS  Google Scholar 

  26. Bharti, S. K., S. Krishnan, A. Kumar, A. K. Gupta, A. K. Ghosh, and A. Kumar (2014) Mechanism-based antidiabetic activity of Fructo-and isomalto-oligosaccharides: Validation by in vivo, in silico and in vitro interaction potential. Proc. Biochem. 50: 317–327.

    Article  Google Scholar 

  27. Andrikopoulos, S., A. R. Blair, N. Deluca, B. C. Fam, and J. Proietto (2008) Evaluating the glucose tolerance test in mice. Am. J. Physiol-Endoc. M. 295: e1323–E1332.

    Google Scholar 

  28. Ludwig, D. S. (2002) The glycemic index: Physiological mechanisms relating to obesity, diabetes, and cardiovascular disease. J. Am Med. Assoc. 287: 2414–2423

    Article  CAS  Google Scholar 

  29. S.U.G.I.R Datafiles of Sydney University Glycemic Index Database, Submission of manuscript. http://glycemicindex.com

  30. Chao, T., Z. PeiNa, Q. LingYu, X. Lin, J. ZhangJun, and L. XiuTing (2014) Progress of research and application in food industry of functional oligosaccharides. J. Food Safety Quality. 5: 123–130.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doman Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S., Hanh, N.T.T., Cho, JY. et al. Glucooligosaccharide production by Leuconostoc mesenteroides fermentation with efficient pH control, using a calcium hydroxide-sucrose solution. Biotechnol Bioproc E 21, 39–45 (2016). https://doi.org/10.1007/s12257-015-0587-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-015-0587-x

Keywords

Navigation