Skip to main content
Log in

Improving Pseudomonas alcaligenes lipase’s diastereopreference in hydrolysis of diastereomeric mixture of menthyl propionate by site-directed mutagenesis

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The resolutions of racemic diastereomeric mixtures of menthyl propionate was performed by Pseudomonas alcaligenes lipase (PaL) to produce (2S, 5R) L-menthol. Because of the inherently low diastereopreference of PaL, covalent docking and molecular dynamic (MD) simulations were used to investigate possible avenues of improvement. Rational site-directed mutagenesis of PaL revealed residues V180 and A272 to be the hotspots for diastereopreference. The double V180L/A272F mutant exhibited the highest degree of diastereopreference, as the diastereomeric ratio of (2S, 5R) L-menthol increased towards both (2R, 5S) L-neomenthol (dr1) and (2R, 5R) D-isoneomenthol (dr2) (diastereomeric ratios dr1 and dr2 increased to 4.65 and 2.13 times that of wild-type PaL). MD simulation analysis indicated that these mutations decrease the flexibility of the surrounding protein regions. The combination of increased steric exclusion and decreased flexibility results in less favorable binding of the non-target substrates, (2R, 5S) L-neomenthyl propionate and (2R, 5R) D-isoneomenthyl propionate, to the V180L/A272F mutant. These results confirmed and further improved our previously proposed model of the diastereomer recognition mechanism based on the combined effect of steric exclusion and regional flexibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rogalska, E., S. Ransac, and R. Verger (1993) Controlling lipase stereoselectivity via the surface pressure. J. Biol. Chem. 2: 792–794.

    Google Scholar 

  2. Bassegoda, A., F. I. J. Pastor, and P. Diaz (2012) Rhodococcus sp. strain CR-53 LipR, the first member of a new bacterial lipase family (family X) displaying an unusual Y-type oxyanion hole, similar to the Candida antarctica lipase clan. Appl. Environ. Microbiol. 78: 1724–1732.

    Article  CAS  Google Scholar 

  3. Berglund, P. (2001) Controlling lipase enantioselectivity for organic synthesis. Biomol. Eng. 18: 13–22.

    Article  CAS  Google Scholar 

  4. Tan, T. W., M. Zhang, B. W. Wang, C. H. Ying, and L. Deng (2003) Screening of high lipase producing Candida sp. and production of lipase by fermentation. Proc. Biochem. 39: 459–465.

    Article  CAS  Google Scholar 

  5. Zheng, G. W., H. L. Yu, J. D. Zhang, and J. H. Xu (2009) Enzymatic production of l-menthol by a high substrate concentration tolerable esterase from newly isolated Bacillus subtilis ECU0554. Adv. Synth. Catal. 351: 405–414.

    Article  CAS  Google Scholar 

  6. Piamtongkam, R., S. Duquesne, F. Bordes, S. Barbe, I. Andre, A. Marty, and W. Chulalaksananukul (2011) Enantioselectivity of Candida rugosa lipases (Lip1, Lip3, and Lip4) towards 2-bromo phenylacetic acid octyl esters controlled by a single amino acid. Biotechnol. Bioeng. 108: 1749–1756.

    Article  CAS  Google Scholar 

  7. Wang, P. Y., C. H. Wu, J. F. Chou, A. C. Wu, and S. W. Tsai (2010) Kinetic resolution of (R,S)-pyrazolides containing substituents in the leaving pyrazole for increased lipase enantioselectivity. J. Mol. Catal. B-Enzym. 66: 113–119.

    Article  CAS  Google Scholar 

  8. Yao, C. J., Y. Cao, S. S. Wu, S. Li, and B. F. He (2013) An organic solvent and thermally stable lipase from Burkholderia ambifaria YCJ 01: Purification, characteristics and application for chiral resolution of mandelic acid. J. Mol. Catal. B-Enzym. 85–86: 105–110.

    Article  Google Scholar 

  9. Zheng, G. W., J. Pan, H. L. Yu, M. Ngo-Thi, C. X. Li, and J. H. Xu (2010) An efficient bioprocess for enzymatic production of l-menthol with high ratio of substrate to catalyst using whole cells of recombinant E. coli. J. Biotechnol. 150: 108–114.

    Article  CAS  Google Scholar 

  10. Zheng, R. C., A. P. Li, and Z. M. Wu (2012) Enzymatic production of (S)-3-cyano-5-methylhexanoic acid ethyl ester with high substrate loading by immobilized Pseudomonas cepacia lipase. Tetrahedron-Asymm. 23: 1517–1521.

    Article  CAS  Google Scholar 

  11. Bordes, F., E. Cambon, V. Dossat-Letisse, I. Andre, C. Croux, J. M. Nicaud, and A. Marty (2009) Improvement of Yarrowia lipolytica lipase enantioselectivity by using mutagenesis targeted to the substrate binding site. ChemBiochem. 10: 1705–1713.

    Article  CAS  Google Scholar 

  12. Guieysse, D., J. Cortes, S, Puech-Guenot, S. Barbe, V. Lafaquiere, P. Monsan, T. Simeon, I. Andre, and M. Remaud-Simeon (2007) A structure-controlled investigation of lipase enantioselectivity by a path-planning approach. ChemBiochem. 9: 1308–1317.

    Article  Google Scholar 

  13. Fuji, K. (1993) Asymmeric creation of quaternary carbon centers. Chem. Rev. 93: 2037–2066.

    Article  CAS  Google Scholar 

  14. Kazlauskas, R. J., A. N. E. Weissfloch, A. T. Rappaport, and L. A. Cuccia (1991) A rule to predict which enantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase, lipase from Pseudomonas cepacia, and lipase from Candida rugosa. J. Org. Chem. 56: 2656–2665.

    Article  CAS  Google Scholar 

  15. Schulz, T., R. D. Schmid, and J. Pleiss (2001) Structural basis of stereoselectivity in Candida rugosa lipase catalyzed hydrolysis of secondary alcohols. J. Mol. Model. 7: 265–270.

    CAS  Google Scholar 

  16. Schulz, T., J. Pleiss, and R. D. Schmid (2000) Stereoselectivity of Pseudomonas cepacia lipase toward secondary alcohols: A quantitative model. Protein Sci. 9: 1053–1062.

    Article  CAS  Google Scholar 

  17. Arun, K. G. and J. H. Kim (2003) Highly diastereoselective anti- Aldol Reactions utilizing the titanium Enolate of cis-2-Arylsul fonamido-1-acenaphthenyl propionate. Org. Lett. 7: 1063–1066.

    Google Scholar 

  18. Nikos, S. H. and S. Ioulia (2004) Enantioselectivity and diastereoselectivity in the transesterification of secondary alcohols mediated by feruloyl esterase from Humicola insolens. Tetrahedron Lett. 13: 2755–2757.

    Google Scholar 

  19. Sun, M. M., H. Chen, J. P. Wu, and L. R. Yang (2012) Cloning, expression and characterization of lipase from Pseudomonas alcaligenes. Weishengwuxue Tongbao. 39: 1580–1588.

    CAS  Google Scholar 

  20. Bradya, D., S. Reddya, B. Mboniswaa, L. H. Steenkampa, A. L. Rousseaua, C. J. Parkinsona, J. Chaplina, R. K. Mitraa, T. Moutlanaa, S. F. Maraisa, and N. S. Gardinera (2012) Biocatalytic enantiomeric resolution of l-menthol from an eight isomeric menthol mixture through transesterification. J. Mol. Catal. BEnzym. 75: 1–10.

    Article  Google Scholar 

  21. Bornscheuer, U. T. and M. Pohl (2001) Improved biocatalysts by directed evolution and rational protein design. Cur. Opin. Chem. Biol. 5: 137–143.

    Article  CAS  Google Scholar 

  22. Chen, H., J. P. Wu, L. R. Yang, and G. Xu (2013) A combination of site-directed mutagenesis and chemical modification to improve diastereopreference of Pseudomonas alcaligenes lipase. Biochim. Biophys. Acta. 1834: 2494–2501.

    Article  CAS  Google Scholar 

  23. Becker, P., I. Abu-Reesh, S. Markossian, G. A. Antranikian, and H. Markl (1997) Determination of the kinetic parameters during continuous cultivation of the lipase-producing thermophile Bacillus sp. IHI-91 on olive oil. Appl. Microbiol. Biot. 48: 184–190.

    Article  CAS  Google Scholar 

  24. Imberty, A., V. Piller, F. Piller, and C. Breton (1997) Fold recognition and molecular modelling of a lectin-like domain in UDP-GalNAc: Polypeptide N-acetylgalactosaminyl transferases. Protein Eng. 10: 1353–1356.

    Article  CAS  Google Scholar 

  25. Kinney, W. A., Jr H. R. Almond, J. Qi, C. E. Smith, R. J. Santulli, L. Garavilla, P. Andrade-Gordon, D. S. Cho, A. M. Everson, M. A. Feinstein, P. A. Leung, and B. E. Maryanoff (2002) Structure-function analysis of urotensin II and its use in the construction of a ligand-receptor working model. Angew. Chem. 41: 2940–2944.

    Article  CAS  Google Scholar 

  26. Laskowski, R. A., M. W. MacArthur, D. S. Moss, and J. M. Thornton (1993) PROCHECK: A program to check the stereochemical quality of protein structure. J. Appl. Crystallogr. 26: 283–291.

    Article  CAS  Google Scholar 

  27. Jakalian, A., B. L. Bush, D. B. Jack, and C. I. Bayly (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC Model: I. Method. J. Comput. Chem. 21: 132–146.

    CAS  Google Scholar 

  28. Jorgensen, W. L. (1982) Revised TIPS for simulations of liquid water and aqueous solutions. J. Chem. Phys. 77: 4156–4163.

    Article  CAS  Google Scholar 

  29. Jorgensen, W. L., J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein (1983) Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79: 926–935.

    Article  CAS  Google Scholar 

  30. Darden, T., D. York, and L. Pedersen (1993) Particle mesh Ewald: An NLog(N) method for Ewald sums in large systems. J. Chem. Physi. 98: 10089–10092.

    Article  CAS  Google Scholar 

  31. Miyamoto, S. and P. A. Kollman (1992) SETTLE: An analytical version of the SHAKE and RATTLE: An analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13: 952–962.

    Article  CAS  Google Scholar 

  32. Kollman, P. A., I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y. Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D. A. Case, and T. E. Cheatham (2000) Calculating structures and free energies of complex molecules: Combining molecular mechanics and continuum models. Acc. Chem. Res. 33: 889–897.

    Article  CAS  Google Scholar 

  33. Hou, T. J., J. M. Wang, Y. Y. Li, and W. Wang (2011) Assessing the performance of the MM/PBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. J. Chem. Inf. Model. 51: 69–82.

    CAS  Google Scholar 

  34. Larsen, N. A., J. M. Turner, J. Stevens, S. J. Rosser, A. Basran, and R. A. Lerner (2002) Crystal structure of a bacterial cocaine esterase. Nat. Struct. Biol. 9: 17–21.

    Article  CAS  Google Scholar 

  35. Gohlke, H., C. Kiel, and D. A. Case (2003) Insights into protein — CProtein binding by binding free energy calculation and free energy decomposition for the Ras — CRaf and Ras — CRalGDS complexes. J. Mol. Boil. 330: 891–913.

    Article  CAS  Google Scholar 

  36. Kamal, J. K. A. and V. B. Digambar (2003) Activity, stability and conformational flexibility of seed coar soybean peroxidise. J. Inorg. Biochem. 94: 236–242.

    Article  CAS  Google Scholar 

  37. Maria, S. C., G. M. Guillermo, and D. F. Gerardo (2003) Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 12: 1496–1506.

    Article  Google Scholar 

  38. Peters, G. H. and R. P. Bywater (1999) Computational analysis of chain flexibility and fluctuations in Rhizomucor miehei lipase. Protein Sci. 12: 747–754.

    Article  CAS  Google Scholar 

  39. Broos, J., A. J. W. G. Visser, J. F. J. Engbersen, W. Verboom, van A. Hoek, and D. N. Reinhoudt (1997) Flexibility of enzymes suspended in organic solvents probed by time-resolved fluorescence anisotropy. Evidence that enzyme activity and enantioselectivity are directly related to enzyme flexibility. J. Am. Chem. Soc. 117: 12657–12663.

    Article  Google Scholar 

  40. Rariy, R. V. and A. M. Klibanov (2000) On the relationship between enzymetic enantioselectivity in organic solvents and enzyme flexibility. Biocatal. Biotransform. 18: 401–407.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ping Wu or Li-Rong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Wu, JP., Yang, LR. et al. Improving Pseudomonas alcaligenes lipase’s diastereopreference in hydrolysis of diastereomeric mixture of menthyl propionate by site-directed mutagenesis. Biotechnol Bioproc E 19, 592–604 (2014). https://doi.org/10.1007/s12257-014-0066-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0066-9

Keywords

Navigation