Skip to main content
Log in

High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The microbial fermentation of malic acid, which is one of the most important organic acid platforms used widely in food and chemical engineering, has attracted considerable interest. A malate production strain was isolated, a mutation was induced, and regulation of the metabolic network was then conducted. The identification results showed that the malic acid production strain, HF- 119, belonged to Rhizopus delemar. An analysis of the metabolic pathway showed that the malic acid flux of this strain occurred through three main pathways, and many byproducts, such as succinic acid, fumaric acid and ethanol, were produced. Although corn straw hydrolyte was used, the metabolism of xylose was not as rapid as that of glucose. Subsequently, breeding of the strains and regulation of the metabolic network resulted in an increase in malate yield, and the strain HF-121 produced more than 120 g/L malic acid within 60 h. The ability to produce malic acid from biomass hydrolyte highlights the industrial development potential of this strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Refrerences

  1. Orjuela, A., A. Orjuela, C. T. Lira, and D. J. Miller (2013) A novel process for recovery of fermentation-derived succinic acid: Process design and economic analysis. Bioresour. Technol. 139: 235–241.

    Article  CAS  Google Scholar 

  2. Nakayama, S., K. Tabata, T. Oba, K. Kusumoto, S. Mitsuiki, T. Kadokura, and A. Nakazato (2012) Characteristics of the high malic acid production mechanism in Saccharomyces cerevisiae sake yeast strain No. 28. J. Biosci. Bioeng. 114: 281–285.

    Article  CAS  Google Scholar 

  3. Oba, T., H. Suenaga, S. Nakayama, S. Mitsuiki, H. Kitagaki, K. Tashiro, and S. Kuhara (2011) Properties of a high malic acidproducing strain of Saccharomyces cerevisiae isolated from sake mash. Biosci. Biotechnol. Biochem. 75: 2025–2029.

    Article  CAS  Google Scholar 

  4. Zhang, X., X. Wang, K. T. Shanmugam, and L. O. Ingram (2011) L-malate production by metabolically engineered Escherichia coli. Appl. Environ. Microbiol. 77: 427–434.

    Article  CAS  Google Scholar 

  5. Han, L. J., Q. J. Yan, X. Y. Liu, and J. Y. Hu (2002) Straw resources and their utilization in China. Transactions of the CSAE. 18: 87–91.

    Google Scholar 

  6. Battat, E., Y. Peleg, A. Bercovitz, J. S. Rokem, and I. Goldberg (1991) Optimization of L-malic acid production by Aspergillus flavus in a stirred fermentor. Biotechnol. Bioeng. 37: 1108–1116.

    Article  CAS  Google Scholar 

  7. Taing, O. and K. Taing (2007) Production of malic and succinic acids by sugar-tolerant yeast Zygosaccharomyces rouxii. Eur. Food. Res. Technol. 224: 343–347.

    Article  CAS  Google Scholar 

  8. Zelle, R. M., E. Hulster, W. A. Winden, P. Waard, C. Dijkema, A. A. Winkler, J. M. Geertman, J. P. van Dijken, J. T. Pronk, and A. J. van Maris (2008) Malic acid production by Saccharomyces cerevisiae: Engineering of pyruvate carboxylation, oxaloacetate reduction, and malate export. Appl. Environ. Microbiol. 74: 2766–2777.

    Article  CAS  Google Scholar 

  9. Brown, S. H., L. Bashkirova, R. Berka, T. Chandler, T. Doty, K. McCall, M. McCulloch, S. McFarland, S. Thompson, D. Yaver, and A. Berry (2013) Metabolic engineering of Aspergillus oryzae NRRL 3488 for increased production of L-malic acid. Appl. Microbiol. Biotechnol. 97: 8903–8912.

    Article  CAS  Google Scholar 

  10. Abe, A., Y. Oda, K. Asano, and T. Sone (2007) Rhizopus delemar is the proper name for Rhizopus oryzae fumaric-malic acid producers. Mycologia. 99: 714–722.

    Article  CAS  Google Scholar 

  11. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254.

    Article  CAS  Google Scholar 

  12. Kregiel, D., J. Berlowska, and W. Ambroziak (2008) Succinate dehydrogenase activity assay in situ with blue tetrazolium salt in crabtree-positive Saccharomyces cerevisiae strain. Food Technol. Biotechnol. 46: 376–380.

    CAS  Google Scholar 

  13. Friedberg, D., Y. Peleg, A. Monsonego, S. Maissi, E. Battat, and I. Goldberg (1995) The fumR gene encoding fumarase in the filamentous fungus Rhizopus oryzae: Cloning, structure and expression. Gene. 163: 139–144.

    Article  CAS  Google Scholar 

  14. Payne, J. and J. G. Morris (1969) Pyruvate carboxylase in Rhodopseudomonas spheroides. J. Gen. Microbiol. 59: 97–101.

    Article  Google Scholar 

  15. Nielsen, J. (2001) Metabolic engineering. Appl. Microbiol. Biotechnol. 55: 263–283.

    Article  CAS  Google Scholar 

  16. Riascosa, C., A. K. Gomberta, and J. M. Pintoa (2005) A global optimization approach for metabolic flux analysis based on labeling balances. Comput. Chem. Eng. 29: 447–458.

    Article  Google Scholar 

  17. Skory, C. D., S. N. Freer, and R. J. Bothast (1998) Production of L-lactic acid by Rhizopus oryzae under oxygen limiting conditions. Biotechnol. Lett. 20: 191–194.

    Article  CAS  Google Scholar 

  18. Liu, Y. P., P. Zheng, Y. Ni, J. J. Dong, P. Wei, and Z. H. Sun (2008) Breeding of Monofluoroacetate-resistant Strains of Actinobacillus succinogenes and the mechanism based on metabolic flux analysis. Chin. J. Biotechnol. 24: 460–467.

    CAS  Google Scholar 

  19. Dhillon, G. S., S. K. Brar, M. Verma, and R. D. Tyagi (2011) Recent advances in citric acid bio-production and recovery. Food Bioproc. Tech. 4: 505–529.

    Article  CAS  Google Scholar 

  20. Miura, S., T. Arimura, L. D. Itoda, J. B. Feng, G. H. Bin, and M. Okabe (2004) Production of L-lactic acid from corncob. J. Biosci. Bioeng. 97: 153–157.

    Article  CAS  Google Scholar 

  21. McKinlay, J. B., Y. Shachar-Hill, J. G. Zeikus, and C. Vieille (2007) Determining Actinobacillus succinogenes metabolic pathways and fluxes by NMR and GC-MS analysis of 13C-labeled metabolic product isotopomers. Metab. Eng. 9: 177–192.

    Article  CAS  Google Scholar 

  22. Szyperski, T. (1995) Biosynthetically directed fractional 13Clabeling of proteinogenic amino acids: An efficient analytical tool to investigate intermediary metabolism. Eur. J. Biochem. 232: 433–448.

    Article  CAS  Google Scholar 

  23. Longacre, A., J. M. Reimers, J. E. Gannon, and B. E. Wright (1997) Flux analysis of glucose metabolism in Rhizopus oryzae for the purpose of increasing lactate yields. Fungal. Genet. Biol. 21: 30–39.

    Article  CAS  Google Scholar 

  24. Santamaria, B., A. M. Estevez, O. H. Martinez-Costa, and J. J. Aragon (2002) Creation of an allosteric phosphofructokinase starting with a nonallosteric enzyme: The case of dictyostelium discoideum phosphofructokinase. J. Biol. Chem. 277: 1210–1216.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Liu, Y., Yang, Y. et al. High levels of malic acid production by the bioconversion of corn straw hydrolyte using an isolated Rhizopus delemar strain. Biotechnol Bioproc E 19, 478–492 (2014). https://doi.org/10.1007/s12257-014-0047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-014-0047-z

Keywords

Navigation