Skip to main content
Log in

Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

Microalgae are viable sources of biological compounds for biodiesel production. In this study, effects of various types of nitrogen sources and nutrients concentrations in the growth medium and different LED light wavelengths and intensities on biomass production of green algae Chlorella vulgaris were investigated. Warm white light with 80 µmol/m2/sec light intensity was determined as the optimal light for biomass production. The results indicated that microalgae growth with urea as nitrogen source was higher than that of other nitrogen sources such as sodium nitrate, ammonium carbonate and ammonium chloride. Maximum biomass concentration (1.37 g/L) was obtained under the following media compositions: urea 0.25 g/L, K2HPO4 0.04 g/L, MgSO4· 7H2O 0.06 g/L, and ammonium ferric citrate 0.01 g/L. Microalgae growth data under the different light wavelengths and intensities were fitted with a mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verma, N. M., S. Mehrotra, A. Shukla, and B. N. Mishra (2010) Prospective of biodiesel production utilizing microalgae as the cell factories: A comprehensive discussion. Afr. J. Biotechnol. 9: 1402–1411.

    CAS  Google Scholar 

  2. Lin, Q. and J. Lin (2011) Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga. Bioresour. Technol. 102: 1615–1621.

    Article  CAS  Google Scholar 

  3. Feng, P., Z. Deng, L. Fan, and Z. Hu (2012) Lipid accumulation and growth characteristics of Chlorella zofingiensis under different nitrate and phosphate concentrations. J. Biosci. Bioeng. 114: 405–410.

    Article  CAS  Google Scholar 

  4. Bhola, V., R. Desikan, S. K. Santosh, K. Subburamu, E. Sanniyasi, and F. Bux (2011) Effects of parameters affecting biomass yield and thermal behaviour of Chlorella vulgaris. J. Biosci. Bioeng. 111: 377–382.

    Article  CAS  Google Scholar 

  5. Illman, A., A. Scragg, and S. Shales (2000) Increase in Chlorella strains calorific values when grown in low nitrogen medium. Enz. Microb. Technol. 27: 631–635.

    Article  CAS  Google Scholar 

  6. Xiong, W., X. Li, J. Xiang, and Q. Wu (2008) High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Appl. Microbiol. Biotechnol. 78: 29–36.

    Article  CAS  Google Scholar 

  7. Ugwu, C., H. Aoyagi, and H. Uchiyama (2007) Influence of irradiance, dissolved oxygen concentration, and temperature on the growth of Chlorella sorokiniana. Photosynthetica 45: 309–311.

    Article  Google Scholar 

  8. Cheirsilp, B. and S. Torpee (2012) Enhanced growth and lipid production of microalgae under mixotrophic culture condition: Effect of light intensity, glucose concentration and fed-batch cultivation. Bioresour. Technol. 110: 510–516.

    Article  CAS  Google Scholar 

  9. Zhao, Y., J. Wang, H. Zhang, C. Yan, and Y. Zhang (2013) Effects of various LED light wavelengths and intensities on microalgae-based simultaneous biogas upgrading and digestate nutrient reduction process. Bioresour. Technol. 136: 461–468.

    Article  CAS  Google Scholar 

  10. Xu, N., X. Zhang, X. Fan, L. Han, and C. Zeng (2001) Effects of nitrogen source and concentration on growth rate and fatty acid composition of Ellipsoidion sp. (Eustigmatophyta). J. Appl. Phycol. 13: 463–469.

    Article  CAS  Google Scholar 

  11. Li, Y., M. Horsman, B. Wang, N. Wu, and C. Q. Lan (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81: 629–636.

    Article  CAS  Google Scholar 

  12. Liu, Z.-Y., G.-C. Wang, and B.-C. Zhou (2008) Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresour. Technol. 99: 4717–4722.

    Article  CAS  Google Scholar 

  13. Hsieh, C.-H. and W.-T. Wu (2009) Cultivation of microalgae for oil production with a cultivation strategy of urea limitation. Bioresour. Technol. 100: 3921–3926.

    Article  CAS  Google Scholar 

  14. Pruvost, J., G. Van Vooren, G. Cogne, and J. Legrand (2009) Investigation of biomass and lipids production with Neochloris oleoabundans in photobioreactor. Bioresour. Technol. 100: 5988–5995.

    Article  CAS  Google Scholar 

  15. Danesi, E., C. de O Rangel-Yagui, J. de Carvalho, and S. Sato (2002) An investigation of effect of replacing nitrate by urea in the growth and production of chlorophyll by Spirulina platensis. Biomass Bioenergy 23: 261–269.

    Article  CAS  Google Scholar 

  16. Matsudo, M. C., R. P. Bezerra, S. Sato, P. Perego, A. Converti, and J. C. M. Carvalho (2009) Repeated fed-batch cultivation of Arthrospira (Spirulina) platensis using urea as nitrogen source. Biochem. Eng. J. 43: 52–57.

    Article  CAS  Google Scholar 

  17. Eilers, P. and J. Peeters (1988) A model for the relationship between light intensity and the rate of photosynthesis in phytoplankton. Ecol. Model. 42: 199–215.

    Article  Google Scholar 

  18. Carvalho, A. P., S. O. Silva, J. M. Baptista, and F. X. Malcata (2011) Light requirements in microalgal photobioreactors: An overview of biophotonic aspects. Appl. Microbiol. Biotechnol. 89: 1275–1288.

    Article  CAS  Google Scholar 

  19. Jeong, H., J. Lee, and M. Cha (2012) Energy efficient growth control of microalgae using photobiological methods. Renewable Energy 54: 161–165.

    Article  Google Scholar 

  20. Carvalho, A. P., L. A. Meireles, and F. X. Malcata (2006) Microalgal reactors: A review of enclosed system designs and performances. Biotechnol. Prog. 22: 1490–1506.

    Article  CAS  Google Scholar 

  21. Matthijs, H. C., H. Balke, U. M. Van Hes, B. Kroon, L. R. Mur, and R. A. Binot (1996) Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnol. Bioeng. 50: 98–107.

    Article  CAS  Google Scholar 

  22. Kim, T.-H., Y. Lee, S.-H. Han, and S.-J. Hwang (2012) The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresour. Technol. 130: 75–80.

    Article  Google Scholar 

  23. Tam, N. and Y. Wong (1996) Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media. Bioresour. Technol. 57: 45–50.

    Article  CAS  Google Scholar 

  24. Trelease, S. F. and H. M. Trelease (1935) Changes in hydrogenion concentration of culture solutions containing nitrate and ammonium nitrogen. Am. J. Bot. 22: 520–542.

    Article  CAS  Google Scholar 

  25. Walker, J. B. (1953) Inorganic micronutrient requirements of Chlorella: I. Requirements for calcium (or strontium), copper, and molybdenum. Arch. Biochem. Biophys. 46: 1–11.

    Article  CAS  Google Scholar 

  26. Converti, A., S. Scapazzoni, A. Lodi, and J. Carvalho (2006) Ammonium and urea removal by Spirulina platensis. J. Ind. Microbiol. Biotechnol. 33: 8–16.

    Article  CAS  Google Scholar 

  27. Przytocka-Jsiak, M. (1976) Growth and survival of Chlorella vulgaris in high concentrations of nitrogen. Acta Microbiol. Pol. 25: 287–289.

    CAS  Google Scholar 

  28. Boström, B., G. Persson, and B. Broberg (1988) Bioavailability of different phosphorus forms in freshwater systems. Hydrobiol. 170: 133–155.

    Article  Google Scholar 

  29. Azad, H. S. and J. A. Borchardt (1970) Variations in phosphorus uptake by algae. Environ. Sci. Technol. 4: 737–743.

    Article  Google Scholar 

  30. Theodorou, M. E., I. R. Elrifi, D. H. Turpin, and W. C. Plaxton (1991) Effects of phosphorus limitation on respiratory metabolism in the green alga Selenastrum minutum. Plant Physiol. 95: 1089–1095.

    Article  CAS  Google Scholar 

  31. Mandalam, R. K. and B. Ø. Palsson (1998) Elemental balancing of biomass and medium composition enhances growth capacity in high-density Chlorella vulgaris cultures. Biotechnol. Bioeng. 59: 605–611.

    Article  CAS  Google Scholar 

  32. Wong, M., L. Chu, and W. Chan (1984) The effects of heavy metals and ammonia in sewage sludge and animal manure on the growth of Chlorella pyrenoidosa. Environ. Pollut. A. 34: 55–71.

    Article  CAS  Google Scholar 

  33. Hase, E., Y. Morimura, S. Mihara, and H. Tamiya (1958) The role of sulfur in the cell division of Chlorella. Archiv Für Mikrobiol. 31: 87–95.

    Article  CAS  Google Scholar 

  34. Meisch, H.-U., L. Becker, and D. Schwab (1980) Ultrastructural changes in Chlorella fusca during iron deficiency and vanadium treatment. Protoplasma 103: 273–280.

    Article  CAS  Google Scholar 

  35. Estevez, M. S., G. Malanga, and S. Puntarulo (2001) Iron-dependent oxidative stress in Chlorella vulgaris. Plant Sci. 161: 9–17.

    Article  CAS  Google Scholar 

  36. Pirt, S. J. and M. Walach (1978) Biomass yields of Chlorella from iron (Y x/Fe) in iron-limited batch cultures. Arch. Microbiol. 116: 293–296.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem D. Najafpour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, A., Najafpour, G.D., Amini, G. et al. Influence of nutrients and LED light intensities on biomass production of microalgae Chlorella vulgaris . Biotechnol Bioproc E 20, 284–290 (2015). https://doi.org/10.1007/s12257-013-0845-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0845-8

Keywords

Navigation