Skip to main content
Log in

Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

This study was conducted to identify the optimum pH range and the appropriate buffer for butyric acid production from rice straw by fermentation using an undefined mixed culture. A series of experiments conducted at pH levels of 5.0 ~ 7.0 showed that neutral pH improved rice straw conversion and consequently carboxylic acid production. The highest butyric acid production (up to 6.7 g/L) was achieved at pH of 6.0 ~ 6.5, while it was only 1.7 g/L without pH control or at pH 5.0. Another series of experiments conducted at pH 6.0 ~ 6.5 buffered with CaCO3, NaHCO3, NH4HCO3 and their combinations indicated that different buffers had different effects onthe product spectrum, and that CaCO3 combined with NaHCO3 was an effective buffer for butyric acid production. The highest total volatile fatty acids (about 12.6 g/L) production and one of the two highest butyric acid concentrations (about 7.6 g/L) were obtained by buffering with CaCO3 combined with NaHCO3. PCR-DGGE analysis revealed that different pH and buffers also influenced the microbial population distribution. Bacteria were suppressed at low pH, while the bacterial community structures at higher pH varied slightly. Overall, this study presents an alternative method for butyric acid production from lignocellulosic biomass without supplementary cellulolytic enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang, C., H. Yang, F. Yang, and Y. Ma (2009) Current progress on butyric acid production by fermentation. Curr. Microbiol. 59: 656–663.

    Article  CAS  Google Scholar 

  2. Al-Shorgani, N., E. Ali, M. Kalil, and W. Yusoff (2012) Bioconversion of butyric acid to butanol by Clostridium saccharoperbutylacetonicum N1-4 (ATCC 13564) in a limited nutrient medium. BioEnerg. Res. 5: 287–293.

    Article  Google Scholar 

  3. Richter, H., N. Qureshi, S. Heger, B. Dien, M. A. Cotta, and L. T. Angenent (2012) Prolonged conversion of n-butyrate to nbutanol with Clostridium saccharoperbutylacetonicum in a twostage continuous culture with in-situ product removal. Biotechnol. Bioeng. 109: 913–921.

    Article  CAS  Google Scholar 

  4. Dwidar, M., J.-Y. Park, R. J. Mitchell, and B.-I. Sang (2012) The future of butyric acid in industry. Sci. World J. 2012: 1–9.

    Article  Google Scholar 

  5. Huang, Y. L., Z. Wu, L. Zhang, C. M. Cheung, and S.-T. Yang (2002) Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour. Technol. 82: 51–59.

    Article  CAS  Google Scholar 

  6. Jiang, L., J. Wang, S. Liang, X. Wang, P. Cen, and Z. Xu (2009) Butyric acid fermentation in a fibrous bed bioreactor with immobilized Clostridium tyrobutyricum from cane molasses. Bioresour. Technol. 100: 3403–3409.

    Article  CAS  Google Scholar 

  7. Zhu, Y., Z. Wu, and S.-T. Yang (2002) Butyric acid production from acid hydrolysate of corn fibre by Clostridium tyrobutyricum in a fibrous-bed bioreactor. Proc. Biochem. 38: 657–666.

    Article  CAS  Google Scholar 

  8. Huang, J., J. Cai, J. Wang, X. Zhu, L. Huang, S.-T. Yang, and Z. Xu (2011) Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresour. Technol. 102: 3923–3926.

    Article  CAS  Google Scholar 

  9. Zigová, J. and E. Šturdík (2000) Advances in biotechnological production of butyric acid. J. Ind. Microbiol. Biotechnol. 24: 153–160.

    Article  Google Scholar 

  10. Agler, M. T., B. A. Wrenn, S. H. Zinder, and L. T. Angenent (2011) Waste to bioproduct conversion with undefined mixed cultures: The carboxylate platform. Trends Biotechnol. 29: 70–78.

    Article  CAS  Google Scholar 

  11. Chang, H., N.-J. Kim, J. Kang, and C. Jeong (2010) Biomassderived volatile fatty acid platform for fuels and chemicals. Biotechnol. Bioproc. Eng. 15: 1–10.

    Article  CAS  Google Scholar 

  12. Kleerebezem, R. and M. C. M. van Loosdrecht (2007) Mixed culture biotechnology for bioenergy production. Curr. Opin. Biotechnol. 18: 207–212.

    Article  CAS  Google Scholar 

  13. Fu, Z. and M. T. Holtzapple (2010) Anaerobic mixed-culture fermentation of aqueous ammonia-treated sugarcane bagasse in consolidated bioprocessing. Biotechnol. Bioeng. 106: 216–227.

    CAS  Google Scholar 

  14. Holtzapple, M. and C. Granda (2009) Carboxylate platform: The MixAlco Process Part 1: Comparison of three biomass conversion platforms. Appl. Biochem. Biotechnol. 156: 95–106.

    Article  Google Scholar 

  15. Chan, W. N., Z. Fu, and M. T. Holtzapple (2011) Co-digestion of swine manure and corn stover for bioenergy production in Mix- Alco consolidated bioprocessing. Biomass Bioenerg. 35: 4134–4144.

    Article  CAS  Google Scholar 

  16. BinLing, A., L. JianZheng, S. JunLing, C. Xue, M. Jia, Z. LiGuo, and B. QiaoYing (2013) Butyric acid fermentation from rice straw with undefined mixed culture: Enrichment and selection of cellulolytic butyrate-producing microbial community. Internat. J. Agricult. Biol. 15: 1075–1082.

    Google Scholar 

  17. Chen, Y., S. Jiang, H. Yuan, Q. Zhou, and G. Gu (2007) Hydrolysis and acidification of waste activated sludge at different pHs. Water Res. 41: 683–689.

    Article  CAS  Google Scholar 

  18. Zhang, B., L. L. Zhang, S. C. Zhang, H. Z. Shi, and W. M. Cai (2005) The Influence of pH on hydrolysis and acidogenesis of kitchen wastes in two-phase anaerobic digestion. Environ. Technol. 26: 329–340.

    Article  Google Scholar 

  19. Hu, Z.-H., G. Wang, and H.-Q. Yu (2004) Anaerobic degradation of cellulose by rumen microorganisms at various pH values. Biochem. Eng. J. 21: 59–62.

    Article  CAS  Google Scholar 

  20. Cysneiros, D., C. J. Banks, S. Heaven, and K.-A. G. Karatzas (2012) The effect of pH control and ‘hydraulic flush’ on hydrolysis and Volatile Fatty Acids (VFA) production and profile in anaerobic leach bed reactors digesting a high solids content substrate. Bioresour. Technol. 123: 263–271.

    Article  CAS  Google Scholar 

  21. Horiuchi, J. I., T. Shimizu, K. Tada, T. Kanno, and M. Kobayashi (2002) Selective production of organic acids in anaerobic acid reactor by pH control. Bioresour. Technol. 82: 209–213.

    Article  CAS  Google Scholar 

  22. Li, C. and H. H. P. Fang (2007) Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit. Rev. Environ. Sci. Technol. 37: 1–39.

    Article  Google Scholar 

  23. Temudo, M., G. Muyzer, R. Kleerebezem, and M. van Loosdrecht (2008) Diversity of microbial communities in open mixed culture fermentations: Impact of the pH and carbon source. Appl. Microbiol. Biotechnol. 80: 1121–1130.

    Article  CAS  Google Scholar 

  24. Kim, I. S., M. H. Hwang, N. J. Jang, S. H. Hyun, and S. T. Lee (2004) Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy. 29: 1133–1140.

    CAS  Google Scholar 

  25. Russell, J. (1992) Another explanation for the toxicity of fermentation acids at low pH: Anion accumulation versus uncoupling. J. Appl. Microbiol. 73: 363–370.

    CAS  Google Scholar 

  26. Zhu, H., W. Parker, R. Basnar, A. Proracki, P. Falletta, M. Béland, and P. Seto (2009) Buffer requirements for enhanced hydrogen production in acidogenic digestion of food wastes. Bioresour. Technol. 100: 5097–5102.

    Article  CAS  Google Scholar 

  27. Selvam, A., S. Y. Xu, X. Y. Gu, and J. W. C. Wong (2010) Food waste decomposition in leachbed reactor: Role of neutralizing solutions on the leachate quality. Bioresour. Technol. 101: 1707–1714.

    Article  CAS  Google Scholar 

  28. Smith, A. D. and M. T. Holtzapple (2010) Investigation of nutrient feeding strategies in a countercurrent mixed-acid multi-staged fermentation: Development of segregated-nitrogen model. Bioresour. Technol. 101: 9700–9709.

    Article  CAS  Google Scholar 

  29. Fu, Z. and M. T. Holtzapple (2010) Consolidated bioprocessing of sugarcane bagasse and chicken manure to ammonium carboxylates by a mixed culture of marine microorganisms. Bioresour. Technol. 101: 2825–2836.

    Article  CAS  Google Scholar 

  30. Van Soest, P. J., J. Robertson, and B. Lewis (1991) Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74: 3583–3597.

    Article  Google Scholar 

  31. Guo, P., X. Wang, W. Zhu, H. Yang, X. Cheng, and Z. Cui (2008) Degradation of corn stalk by the composite microbial system of MC1. J. Environ. Sci. 20: 109–114.

    Article  CAS  Google Scholar 

  32. Morikawa, Y., M. Kawamori, Y. Ado, Y. Shinsha, F. Oda, and S. Takasawa (1985) Improvement of cellulase production in Trichoderma reesei. Agric. Biol. Chem. 49: 1869–1871.

    Article  CAS  Google Scholar 

  33. Fu, Z. and M. Holtzapple (2011) Anaerobic thermophilic fermentation for carboxylic acid production from in-storage air-limetreated sugarcane bagasse. Appl. Microbiol. Biotechnol. 90: 1669–1679.

    Article  CAS  Google Scholar 

  34. Nachiappan, B., Z. Fu, and M. T. Holtzapple (2011) Ammonium carboxylate production from sugarcane trash using long-term airlime pretreatment followed by mixed-culture fermentation. Bioresour. Technol. 102: 4210–4217.

    Article  CAS  Google Scholar 

  35. Thanakoses, P., N. Mostafa, and M. Holtzapple (2003) Conversion of sugarcane bagasse to carboxylic acids using a mixed culture of mesophilic microorganisms. Appl. Biochem. Biotechnol. 107: 523–546.

    Article  Google Scholar 

  36. Kayhanian, M. (1999) Ammonia inhibition in high-solids biogasification: An overview and practical solutions. Environ. Technol. 20: 355–365.

    Article  CAS  Google Scholar 

  37. Forrest, A. K., R. Sierra, and M. T. Holtzapple (2010) Suitability of pineapple, Aloe vera, molasses, glycerol, and office paper as substrates in the MixAlco process. Biomass Bioenerg. 34: 1195–1200.

    Article  CAS  Google Scholar 

  38. Agbogbo, F. K. and M. T. Holtzapple (2007) Fixed-bed fermentation of rice straw and chicken manure using a mixed culture of marine mesophilic microorganisms. Bioresour. Technol. 98: 1586–1595.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianzheng Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, B., Li, J., Chi, X. et al. Effect of pH and buffer on butyric acid production and microbial community characteristics in bioconversion of rice straw with undefined mixed culture. Biotechnol Bioproc E 19, 676–686 (2014). https://doi.org/10.1007/s12257-013-0655-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0655-z

Keywords

Navigation