Skip to main content
Log in

Oxygen limitation improves ganoderic acid biosynthesis in submerged cultivation of Ganoderma lucidum

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The effects of oxygen limitation on the production of ganoderic acid (GA), a secondary metabolite with antitumor activity, and on transcription levels of triterpene biosynthesis genes were investigated in liquid cultures of Ganoderma lucidum. A low oxygen supply level was beneficial to total GA biosynthesis, but negative to the cell growth. The higher GA production was obtained under micro-aerobic conditions (i.e. initial overall kLa values at 0.02 and 0.13/h). The maximum GA production of 272.3 ± 11.5 mg/L was obtained at an initial overall kLa of 0.13/h, which was 1.7-fold that at a normal cultivation condition (an initial kLa of 5.51/h). For four major individual GAs, the production level of GA-Mk, -T, -S, and -Me in the hypoxia-induced cells was increased by 50, 87, 62, and 111%, compared with that of the control, respectively. Meanwhile, the transcriptions of four key genes encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase, mevalonate-5-pyrophosphate decarboxylase, squalene synthase and squalene epoxidase in the triterpene biosynthetic pathway were up-regulated under the hypoxia condition (at an initial kLa of 0.13/h). Reactive oxygen species was generated in response to hypoxia, which seemed to be involved in the regulation of GA biosynthesis. The information obtained provides an insight into the role of oxygen limitation in the GA biosynthesis, and will be helpful for optimizing the fermentation process on a large scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Boh, B., M. Berovic, J. S. Zhang, and Z. B. Lin (2007) Ganoderma lucidum and its pharmaceutically active compounds. Biotechnol. Annual Rev. 13: 265–301.

    Article  CAS  Google Scholar 

  2. Wang, J. L., T. Gu, and J. J. Zhong (2012) Enhanced recovery of antitumor ganoderic acid T from Ganoderma lucidum mycelia by novel chemical conversion strategy. Biotechnol. Bioeng. 109: 754–762.

    Article  CAS  Google Scholar 

  3. Tang, W., J. W. Liu, W. M. Zhao, D. Z. Wei, and J. J. Zhong (2006) Ganoderic acid T from Ganoderma lucidum mycelia induces mitochondria mediated apoptosis in lung cancer cells. Life Sci. 80: 205–211.

    Article  CAS  Google Scholar 

  4. Akihisa, T., Y. Nakamura, M. Tagata, H. Tokuda, K. Yasukawa, E. Uchiyama, T. Suzuki, and Y. Kimura (2007) Anti-inflammatory and anti-tumor-promoting effects of triterpene acids and sterols from the fungus Ganoderma lucidum. Chem. Biodivers. 4: 224–231.

    Article  CAS  Google Scholar 

  5. Chen, N. H. and J. J. Zhong (2009) Ganoderic acid Me induces G1 arrest in wild-type p53 human tumor cells while G1/S transition arrest in p53-null cells. Proc. Biochem. 44: 928–933.

    Article  CAS  Google Scholar 

  6. El-Mekkawy, S., M. R. Meselhy, N. Nakamura, Y. Tezuka, M. Hattori, N. Kakiuchi, K. Shimotohno, T. Kawahata, and T. Otake (1998) Anti-HIV-1 and anti-HIV-1-protease substances from Ganoderma lucidum. Phytochem. 49: 1651–1657.

    Article  CAS  Google Scholar 

  7. Zhong, J. J. and Y. J. Tang (2004) Submerged cultivation of medicinal mushrooms for production of valuable bioactive metabolites. Adv. Biochem. Eng. Biotechnol. 87: 25–59.

    CAS  Google Scholar 

  8. Fang, Q. F. and J. J. Zhong (2002) Submerged fermentation of higher fungus Ganoderma lucidum for production of valuable bioactive metabolites-ganoderic acid and polysaccharide. Biochem. Eng. J. 10: 61–65.

    Article  CAS  Google Scholar 

  9. Liang, C. X., Y. B. Li, J. W. Xu, J. L. Wang, X. L. Miao, Y. J. Tang, T. Y. Gu, and J. J. Zhong (2010) Enhanced biosynthetic gene expressions and production of ganoderic acids in static liquid culture of Ganoderma lucidum under phenobarbital induction. Appl. Microbiol. Biotechnol. 86: 1367–1374.

    Article  CAS  Google Scholar 

  10. Ren, A., L. Qin, L. Shi, X. Dong, D. S. Mu, Y. X. Li, and M. W. Zhao (2010) Methyl jasmonate induces ganoderic acid biosynthesis in the basidiomycetous fungus Ganoderma lucidum. Bioresour. Technol. 101: 6785–6790.

    Article  CAS  Google Scholar 

  11. Tang, Y. J. and L. W. Zhu (2010) Improvement of ganoderic acid and Ganoderma polysaccharide biosynthesis by Ganoderma lucidum fermentation under the inducement of Cu2+. Biotechnol. Prog. 26: 417–423.

    CAS  Google Scholar 

  12. Zhao, W., J. W. Xu, and J. J. Zhong (2011) Enhanced production of ganoderic acids in static liquid culture of Ganoderma lucidum under nitrogen-limiting conditions. Bioresour. Technol. 102: 8185–8190.

    Article  CAS  Google Scholar 

  13. Garcia-Ochoa, F., E. Gomez, V. E. Santos, and J. C. Merchuk (2010) Oxygen uptake rate in microbial processes: An overview. Biochem. Eng. J. 49: 289–307.

    Article  CAS  Google Scholar 

  14. Narta, U., S. Roy, S. S. Kanwar, and W. Azmi (2011) Improved production of l-asparaginase by Bacillus brevis cultivated in the presence of oxygen-vectors. Bioresour. Technol. 102: 2083–2085.

    Article  CAS  Google Scholar 

  15. Shih, I. L., K. Pan, and C. Hsieh (2006) Influence of nutritional components and oxygen supply on the mycelial growth and bioactive metabolites production in submerged culture of Antrodia cinnamomea. Proc. Biochem. 41: 1129–1135.

    Article  CAS  Google Scholar 

  16. Xu, Y. and J. J. Zhong (2011) Significance of oxygen supply in production of a novel antibiotic by Pseudomonas sp. SJT25. Bioresour. Technol. 102: 9167–9174.

    Article  CAS  Google Scholar 

  17. Branco, R. F., J. C. Santos, B. F. Sarrouh, J. D. Rivaldi, A. Pessoa, and J. S. S. Silva (2009) Profiles of xylose reductase, xylitol dehydrogenase and xylitol production under different oxygen transfer volumetric coefficient values. J. Chem. Technol. Biotechnol. 84: 326–330.

    Article  CAS  Google Scholar 

  18. Bule, M. V. and R. S. Singhal (2010) Combined effect of agitation/ aeration and fed-batch strategy on ubiquinone-10 production by Pseudomonas diminuta. Chem. Eng. Technol. 33: 885–894.

    Article  CAS  Google Scholar 

  19. Hsieh, C. Y., M. H. Tseng, and C. J. Liu (2006) Production of polysaccharides from Ganoderma lucidum (CCRC 36041) under limitations of nutrients (CCRC 36041) under limitations of nutrients. Enz. Microb. Technol. 38: 109–117.

    Article  CAS  Google Scholar 

  20. Zou, Y. Z., K. Qi, X. Chen, X. L. Miao, and J. J. Zhong, (2010) Favorable effect of very low initial kLa value on xylitol production from xylose by a self-isolated strain of Pichia guilliermondii. J. Biosci. Bioeng. 109: 149–152.

    Article  CAS  Google Scholar 

  21. Blokhina, O. and K. V. Fagerstedt (2010) Oxidative metabolism, ROS and NO under oxygen deprivation. Plant Physiol. Biochem. 48: 359–373.

    Article  CAS  Google Scholar 

  22. Tang, Y.J. and J. J. Zhong (2003) Role of oxygen supply in submerged fermentation of Ganoderma lucidum for production of Ganoderma polysaccharide and ganoderic acid. Enz. Microb. Technol. 32: 478–484.

    Article  CAS  Google Scholar 

  23. Tang, Y. J., W. Zhang, and J. J. Zhong (2009) Performance analyses of a pH-shift and DOT-shift integrated fed-batch fermentation process for the production of ganoderic acid and Ganoderma polysaccharides by medicinal mushroom Ganoderma lucidum. Bioresour. Technol. 100: 1852–1859.

    Article  CAS  Google Scholar 

  24. Zlokarnik, M. (1978) Sorption characteristics for gas-liquid contacting in mixing vessels. Adv. Biochem. Eng. 8: 133–151.

    CAS  Google Scholar 

  25. Dubois, M., K. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith (1956) Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356.

    Article  CAS  Google Scholar 

  26. Xu, J. W., Y. N. Xu, and J. J. Zhong (2010) Production of individual ganoderic acids and expression of biosynthetic genes in liquid static and shaking cultures of Ganoderma lucidum. Appl. Microbiol. Biotechnol. 85: 941–948.

    Article  CAS  Google Scholar 

  27. Livak, K. and T. D. Schmittgen (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25: 402–408.

    Article  CAS  Google Scholar 

  28. Nakano, K., R. Katsu, K. Tada, and M. Matsumura (2000) Production of highly concentrated xylitol by Candida magnoliae under a microaerobic condition maintained by simple fuzzy control. J. Biosci. Bioeng. 89: 372–376.

    Article  CAS  Google Scholar 

  29. Chen, N. H., J. W. Liu, and J. J. Zhong (2010) Ganoderic acid T inhibits tumor invasion in vitro and in vivo through inhibition of MMP expression. Pharmacol. Rep. 62: 150–163.

    Article  CAS  Google Scholar 

  30. Liu, R. M. and J. J. Zhong (2012) Ganoderic acid Mf and S induce mitochondria mediated apoptosis in human cervical carcinoma HeLa cells. Phytomed. 19: 569.

    Article  CAS  Google Scholar 

  31. Zhang, W. X. and J. J. Zhong (2010) Effect of oxygen concentration in gas phase on sporulation and individual ganoderic acids accumulation in liquid static culture of Ganoderma lucidum. J. Biosci. Bioeng. 109: 37–40.

    Article  CAS  Google Scholar 

  32. Rathore, R., Y. M. Zheng, C. F. Niu, Q. H. Liu, A. Korde, Y. S. Ho, and Y. X. Wang (2008) Hypoxia activates NADPH oxidase to increase [ROS]i and [Ca2+]i through mitochondrial ROS-PKCɛ signaling axis in pulmonary artery smooth muscle cells. Free Radic. Biol. Med. 45: 1223–1231.

    Article  CAS  Google Scholar 

  33. Setiadi, E.R., T. Doedt, F. Cottier, C. Noffz. and J. F. Ernst (2006) Transcriptional response of Candida albicans to hypoxia: Linkage of oxygen sensing and efg1p-regulatory networks. J. Mol. Biol. 361: 399–411.

    Article  CAS  Google Scholar 

  34. Morard, P., J. Silvestre, L. Lacoste, E. Caumes, and T. Lamaze (2004) Nitrate uptake and nitrite release by tomato roots in response to anoxia. J. Plant Physiol. 161: 855–865.

    Article  CAS  Google Scholar 

  35. Yeh, S. F., C. S. Chou, L. J. Lin, and M. S. Shiao (1989) Biosynthesis of oxygenated triterpenoids in Ganoderma lucidum. Proc. Natl. Sci. Council B. ROC. 13: 119–127.

    CAS  Google Scholar 

  36. Hirotani, M., I. Asaka, and T. Furuya (1990) Investigation of the biosynthesis of 3-hydroxy triterpenoids, ganoderic acids T and S by application of a feeding experiment using [1, 2-13C2] acetate. J. Chem. Soc. Perkin. Trans. 1: 2751–2754.

    Article  Google Scholar 

  37. Shang, C. H., F. Zhu, N. Li, X. Yang, L. Shi, M. W. Zhao, and Y. X. Li (2008) Cloning and characterization of a gene encoding HMG-CoA reductase from Ganoderma lucidum and its functional identification in yeast. Biosci. Biotechnol. Biochem. 72: 1333–1339.

    Article  CAS  Google Scholar 

  38. Lee, J. H., Y. H. Yoon, H. Y. Kim, D. H. Shin, D. U. Kim, I. J. Lee, and K. U. Kim (2002) Cloning and expression of squalene synthase cDNA from hot pepper (Capsicum annuum L.). Mol. Cells 13: 436–443.

    CAS  Google Scholar 

  39. Shiao, M. S. (1992) Triterpenoid natural products in the fungus Ganoderma lucidum. J Chin. Chem. Soc. 39: 669–674.

    CAS  Google Scholar 

  40. Zhang, W. X., Y. J. Tang, and J. J. Zhong, (2010) Impact of oxygen level in gaseous phase on gene transcription and ganoderic acid biosynthesis in liquid static cultures of Ganoderma lucidum. Bioproc. Biosyst. Eng. 33: 683–690.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-Jiang Zhong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, WX., Zhong, JJ. Oxygen limitation improves ganoderic acid biosynthesis in submerged cultivation of Ganoderma lucidum . Biotechnol Bioproc E 18, 972–980 (2013). https://doi.org/10.1007/s12257-013-0148-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0148-0

Keywords

Navigation