Skip to main content
Log in

ABE production from yellow poplar through alkaline pre-hydrolysis, enzymatic saccharification, and fermentation

Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

ABE (acetone-butanol-ethanol) was produced through alkaline pre-hydrolysis, enzymatic saccharification, and fermentation using yellow poplar as a raw material. In alkaline pre-hydrolysis, 51.1% of the biomass remained as a residue. In the main woody components, the degrees of lignin and xylan removal were 94.3 and 62.0%, respectively. A yield of 80.9% for cellulose-to-glucose and 81.2% for xylan-to-xylose were obtained by enzymatic hydrolysis. The sugar composition of enzymatic hydrolysate was 95.1 g/L of glucose and 21.4 g/L of xylose. The enzymatic hydrolysate also contained 0.5 g/L of acetic acid and 0.5 g/L of total phenolics. Furfural and 5-hydroxymethylfurfural (5-HMF) were not detected in this hydrolysate. The yellow poplar hydrolysate (YPH) from enzymatic saccharification was used for the production of ABE using Clostridium acetobutylicum and C. beijerinckii. In YPH fermentation, C. acetobutylicum produced 18.1 g/L total ABE (productivity 0.38 g/L h, and yield 0.42), and C. beijerinckii produced 12.1 g/L (productivity 0.25 g/L h, and yield 0.37). Although the ABE productivity by C. beijerinckii was slightly low, the general performance of ABE fermentation in YPH was similar to or higher than those reported previously. Therefore, alkaline pre-hydrolysis could be a very effective pretreatment step prior to enzymatic hydrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Rowel, R. M., R. Pettersen, J. S. Han, J. S. Rowell, and M. A. Tshabalala (2005) Cell wall chemistry. pp. 33–45. In: R. M Rowell (ed.). Wood chemystry and wood composites. Taylor & Francis, Boca Ranton, USA.

    Google Scholar 

  2. Shin, S. -J., J. H. Park, D. H. Cho, Y. H. Kim, and N. S. Cho (2009) Acid hydrolysis characteristics of yellow poplar for high concentration of monosaccharides production. J. Kor. Wood Sci. Technol. 37: 578–584.

    Google Scholar 

  3. Asada, C. and Y. Nakamura (2005) Chemical characteristics and ethanol fermentation of the cellulose component in autohydrolyzed bagasse. Biotechnol. Bioproc. Eng. 10: 346–352.

    Article  CAS  Google Scholar 

  4. Clark, T. A. and K. L. Mackie (1987) Steam explosion of the softwood pinus radiata with sulphur dioxide addition. I. Process optimisation. J. Wood Chem. Technol. 7: 373–403.

    Article  CAS  Google Scholar 

  5. Dale, B., J. Weaver, and F. M. Byers (1999) Extrusion processing for ammonia fiber explosion (AFEX). Appl. Biochem. Biotechnol. 77: 35–45.

    Article  Google Scholar 

  6. Dale, B. E., C. K. Leong, T. K. Pham, V. M. Esquivel, I. Rios, and V. M. Latimer (1996) Hydrolysis of lignocellulosics at low enzyme levels: Application of the AFEX process. Bioresour. Technol. 56: 111–116.

    Article  CAS  Google Scholar 

  7. Han, M., S. -K. Moon, Y. Kim, Y. Kim, B. Chung, and G. -W. Choi (2009) Bioethanol production from ammonia percolated wheat straw. Biotechnol. Bioproc. Eng. 14: 606–611.

    Article  CAS  Google Scholar 

  8. Lee, Y. Y., Z. Wu, and R. W. Torget (2000) Modeling of countercurrent shrinking-bed reactor in dilute-acid total-hydrolysis of lignocellulosic biomass. Bioresour. Technol. 71: 29–39.

    Article  CAS  Google Scholar 

  9. Mok, W. S. L. and M. J. Antal (1992) Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water. Ind. Eng. Chem. Res. 31: 1157–1161.

    Article  CAS  Google Scholar 

  10. Cho, D. H., Y. J. Lee, Y. Um, B. -I. Sang, and Y. H. Kim (2009) Detoxification of model phenolic compounds in lignocellulosic hydrolysates with peroxidase for butanol production from Clostridium beijerinckii. Appl. Microbiol. Biotechnol. 83: 1035–1043.

    Article  CAS  Google Scholar 

  11. NREL (2005) Determination of Extractives in biomass, Laboratory Analytical Procedure (LAP), http://www.nrel.gov/biomass/analytical_procedures.html.

    Google Scholar 

  12. NREL (2008) Determination of Structural Carbohydrates and Lignin in Biomass, Laboratory Analytical Procedure (LAP), http://www.nrel.gov/biomass/analytical_procedures.html.

    Google Scholar 

  13. Shin, S. -J. and N. -S. Cho (2008) Conversion factors for carbohydrate analysis by hydrolysis and 1H-NMR spectroscopy. Cellulose. 15: 255–260.

    Article  CAS  Google Scholar 

  14. Cho, D. H., S. -J. Shin, Y. Bae, C. Park, and Y. H. Kim (2011) Ethanol production from acid hydrolysates based on the construction and demolition wood waste using Pichia stipitis. Bioresour. Technol. 102: 4439–4443.

    Article  CAS  Google Scholar 

  15. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. pp. 152–178. In: L. Packer (ed.). Methods in enzymology, oxidants and antioxidants. Part A. Academic Press, San Diego.

    Chapter  Google Scholar 

  16. Shin, S. -J., G. -S. Han, I. -G. Choi, and S. -H. Han (2008) Chemical characterization of industrial hemp (Cannabis sativa) biomass as biorefinery feedstock. Kor. J. Plant Res. 21: 222–225.

    Google Scholar 

  17. Pan, X. (2008) Role of functional groups in lignin inhibition of enzymatic hydrolysis of cellulose to glucose. J. Biobased Mater. Bioenergy. 2: 25–32.

    Article  Google Scholar 

  18. Ximenes, E., Y. Kim, N. Mosier, B. Dien, and M. Ladisch (2010) Inhibition of cellulases by phenols. Enz. Microb. Technol. 46: 170–176.

    Article  CAS  Google Scholar 

  19. Qing, Q., B. Yang, and C. E. Wyman (2010) Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 101: 9624–9630.

    Article  CAS  Google Scholar 

  20. Yang, B. and C. E. Wyman (2004) Effect of xylan and lignin removal by batch and flowthrough pretreatment on the enzymatic digestibility of corn stover cellulose. Biotechnol. Bioeng. 86: 88–98.

    Article  CAS  Google Scholar 

  21. Öhgren, K., R. Bura, J. Saddler, and G. Zacchi (2007) Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover. Bioresour. Technol. 98: 2503–2510.

    Article  Google Scholar 

  22. Cho, D. H., S. -J. Shin, and Y. H. Kim (2012) Effect of acetic and formic acid on ABE production by Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnol. Bioproc. Eng. 17: 270–275.

    Article  CAS  Google Scholar 

  23. Qureshi, N., T. C. Ezeji, J. Ebener, B. S. Dien, M. A. Cotta, and H. P. Blaschek (2008) Butanol production by Clostridium beijerinckii. Part I: Use of acid and enzyme hydrolyzed corn fiber. Bioresour. Technol. 99: 5915–5922.

    Article  CAS  Google Scholar 

  24. Ezeji, T., N. Qureshi, and H. P. Blaschek (2007) Butanol production from agricultural residues: Impact of degradation products on Clostridium beijerinckii growth and butanol fermentation. Biotechnol. Bioeng. 97: 1460–1469.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soo-Jeong Shin or Yong Hwan Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cho, D.H., Shin, SJ., Sang, BI. et al. ABE production from yellow poplar through alkaline pre-hydrolysis, enzymatic saccharification, and fermentation. Biotechnol Bioproc E 18, 965–971 (2013). https://doi.org/10.1007/s12257-013-0143-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-013-0143-5

Keyword

Navigation